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Soliton tunneling with sub-barrier kinetic energies
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We investigate~theoretically and numerically! the dynamics of a soliton moving in an asymmetrical poten-
tial well with a finite barrier. For large values of the width of the well, the width of the barrier, and/or the
height of the barrier, the soliton behaves classically. On the other hand, we obtain the conditions for the
existence of soliton tunneling with sub-barrier kinetic energies. We apply these results to the study of soliton
propagation in disordered systems.@S1063-651X~99!50707-1#

PACS number~s!: 42.65.Tg, 05.45.Yv, 52.35.Mw, 73.40.Gk
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The escaping process of a particle from a potential w
like that shown in Fig. 1~barrier crossing!, is a problem of
great importance in almost all areas of physics@1#.

In the case of a classical particle, this escape should o
over the barrier with the help of external perturbations~e.g.,
thermally activated barrier crossing! @1#. On the other hand, a
quantum particle can perform tunneling with certain pro
ability p,1.

In the present Rapid Communication we address the q
tion: what happens if, in the potential well, instead of
pointlike particle we have asoliton? This is very relevant to
Skyrmion models for nucleon physics, the motion of fluxo
in long Josephson junctions with impurities, the dynamics
domain walls in ferroelectric materials in the presence
inhomogeneous electric fields, and many other physical
tems where the solitons move in a potential created by in
mogeneities and external forces@2–5#.

It is well known that a soliton can behave like a classi
particle in some physical systems@2,6#. However, recently
there has been great interest in nonclassical behaviors o
soliton @7–14#. In particular, we are interested in extreme
surprising phenomena that can occur when the soliton
haves as an extended object@8–10#.

Among these phenomena is the soliton tunneling s
gested by Ka¨lbermann in a beautiful paper@15#. However,
this was a numerical work and the tunneling with sub-bar
kinetic energies was not observed in the specific situation
which the numerical experiments were performed.

In the present Rapid Communication we show~theoreti-
cally and numerically! that the tunneling with sub-barrie
kinetic energies is, indeed, possible. As an example we c
sider the perturbedf4-equation:

f tt2fxx2
1

2
~f2f3!5F~x!. ~1!

The external forceF(x) is such that a pointlike soliton would
feel an effective potential, such as that shown in Fig. 1.

When the soliton is treated as a pointlike particle, t
zeroes of F(x) are equilibrium points@9#. The zeroes
PRE 601063-651X/99/60~1!/37~4!/$15.00
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x0 @F(x0)50# for which @dF(x)/dx#x5x0
.0 are stable

equilibrium positions. In the opposite case, they are unsta
For our theoretical calculations we will use the forceF(x)

defined in the following way:

F~x!5F1~x!, for x,x* , ~2!

F~x!5c, for x.x* , ~3!

where

F1~x!5
1

2
A~A221!tanh~Bx!

1
1

2
A~4B22A2!

sinh~Bx!

cosh3~Bx!
, x* ~x* .0!

is the point whereF1(x) has a local minimum@dF(x* )/dx
50#, andc5F1(x* ).

The conditionuF(2`)u5 1
2 AuA221u,1/3A3 should hold

for the stability of the soliton as a whole. This force allow

FIG. 1. PotentialV(x) for the soliton escaping problem. Th
inset shows the forceF(x). Note that in all figures the quantitie
plotted are dimensionless.
R37 ©1999 The American Physical Society
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us to solve the problem of soliton dynamics in a neighb
hood of the equilibrium points@8–10#. For instance, the sta
bility problem @f(x,t)5fk(x)1 f (x)elt# of the equilibrium
point x050 is reduced to the eigenvalue problemL̂ f 5G f ,
where

L̂52]x
21S 3

2
A22

1

2
2

3A2

2 cosh2~Bx!
D

and G52l2. The eigenvalues of the discrete spectrum
given by Gn52 1

2 1B2(L12Ln2n2) where L(L11)
53A2/2B2.

Our analysis reveals that ifA2.1 and 4B2,1, the force
given by Eqs.~2! and ~3! possesses the desired properti
i.e., there is a zero that would correspond to a stable equ
rium position in a pointx52d (d.0) and a zero in the
point x50 that would correspond to an unstable equilibriu
position and would serve as a potential barrier. Forx.0 the
potential is a monotonically decreasing function.

In fact, if 2B2(3A221),1, then the soliton behaves cla
sically. In this case, the solitonfeelsthe barrier in the point
x50. If the soliton is situated in a vicinity of pointx50
with zero initial velocity and with the center of mass in
point x,0, it will not move to the right of pointx50.

On the other hand, if 2B2(3A221).1, the soliton will
move to the right, crossing the barrier even if its center
mass is placed in the minimum of the potential and its ini
velocity is zero~see Fig. 2!. In this case the soliton perform
tunneling with sub-barrier kinetic energy.

We should remark that this phenomenon is possible o
when the distanced between the minimum of the potentia
well and the maximum of the potential barrier holds the
equalityd,2.17, where

d5~1/B!arccosh@A~A224B2!/~A221!#

.

This can be interpreted in the sense that thewavelengthof
the soliton should be comparable with the width of the p
tential well.

FIG. 2. Numerical simulation of the soliton tunneling with su
barrier kinetic energy. The pale curve is the potential and the b
curve is the soliton. The inflexion point is approximately the cen
of mass.~a! t50, V(t50)50; ~b!–~f! show the dynamics in suc
cessive time instants.
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In this context, the work@14# addresses the difference
and similarities of soliton phenomena with those of po
particles. Although the studied phenomena are very differ
we can say that the main conclusion is consistent with
previous papers@8–10# and the present one; the soliton b
haves as a particle only when the width of the poten
makes the soliton appear pointlike. Otherwise, the soli
can have wavelike extended character.

The condition for soliton tunneling can be written in mo
physical terms. In fact, the forceF(x) can be defined by the
valueF05u lim

x→2`
F(x)u, the width of the barrierSand the

local maximumFm of the force between the pointsx52d
and x50 ~see inset in Fig. 1!. In these terms, the approx
mate condition for the existence of soliton tunneling isF0
.FmS2/6. This inequality shows that greater values ofF0
support the tunneling, while greater values ofFm andS can
thwart the tunneling.

We have performed numerical experiments with the fo
F(x) defined as in Eqs.~2! and ~3!, and with many other
functions that produce an effective potential, such as t
shown in Fig. 1. We have been able to control the values
F0 , Fm , andS. Figure 3 shows the numerical experimen
The dots on the curve separate two zones: the zone in w
the soliton tunneling is possible~upper zone! and the zone in
which the soliton tunneling is impossible~lower zone!. Note
that the relationF05FmS2/6 is approximately satisfied. With
other forces, the results are qualitatively equivalent.

Sometimes it is convenient to see the condition for
existence of soliton tunneling in terms of a parameter t
defines the potential. An important characteristic of the p
tential is the height of the potential barrier,Vm . Figure 4
shows the relationship betweenF0 and Vm while the bifur-
cation condition 2B2(3A221)51 holds. For points above
the curve, the tunneling occurs. For points under the cu
the soliton behaves classically. That is, as was expected
height of the potential barrier is an opposing factor w
respect to the tunneling.

ld
r

FIG. 3. Conditions for the existence of soliton tunneling wi
sub-barrier kinetic energy. The curveF05FmS2/6 separates the up
per zone, where the soliton tunneling is possible from the low
zone, where the soliton tunneling is impossible. The filled circ
represent numerical experiments.
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Note that the values of the potentialV(x) @or the force
F(x)] for x!2d can influence the tunneling. This is in con
trast with the behavior of a pointlike classical particle.

We should remark directly that, with this phenomeno
there is no violation of the energy conservation law. In fa
the energy of the whole system

E[E
2`

` F1

2 S ]f

]t D 2

1
1

2 S ]f

]x D 2

2
1

4
f21

1

8
f42F~x!f1cGdx

~4!

is conserved. In this case, the soliton does not behave li
classical pointlike particle. The soliton, as an extended
ject, possesses a wave-mechanical behavior. Even whe
center of mass is situated at a point of minimal poten
energy and with zero kinetic energy, the system as a wh
can have enough energy to make the soliton able to cros
barrier ~although the center of mass goes through the b
rier!. Kälbermann’s example of a high jumper is felicitou
@15#. However, we should note the presence of nonlocal
fects during this process.

The propagation of solitons in disordered media has b
studied intensively in recent years@16#. There is consensu
in the conclusion that nonlinearity can modify the effects
localization and the transmission is improved. Neverthele
even in a nonlinear system supporting solitons, if the la
behave as pointlike particles, they can be trapped in the
roes of the forceF(x). We stress that the phenomenon
soliton tunneling can enhance the transmission even mo

Consider Eq.~1! with F(x) defined in such a way that i
possesses many zeroes, maxima, and minima~see Fig. 5!.
This system describes an array of inhomogeneities. The a
can be studied as a series of elements with two zeroes a
maximum. If for each element the conditionF0.FmS2/6 is
satisfied, then the soliton can cross the whole inhomo
neous zone~we have checked this numerically!. The array
can be completely disordered. If the condition is fulfille
there is no localization.

In many systems@16–20# the solitons play the role o
means of transport; they can carry energy and/or charge.

FIG. 4. Conditions for the existence of soliton tunneling w
sub-barrier kinetic energy involving the parametersF0 and Vm .
The other parameters remain fixed.
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result shows that, when soliton tunneling is possible, the s
ton can be a very efficient carrier.

Kälbermann @15# investigated impurities that are intro
duced in the Hamiltonian density in the following way:

H5
1

2 S ]f

]t D 2

1
1

2 S ]f

]x D 2

1
1

8
p~f221!2, ~5!

wherep5p01U(x); p0 is a constant;U(x) is the perturba-
tion that describes the impurity. The perturbations used
the numerical experiments in Ref.@15# are given by the func-
tion

U~x!5
h1

cosh2S x2x1

a1
D 1

h2

cosh2S x2x2

a2
D . ~6!

This perturbation is equivalent to an effective potential w
a maximum, a minimum, or a combination of both. Out
the inhomogeneous zone, the potential tends to zero e
nentially. Suppose that the soliton moves from the left with
kinetic energy less than the maximum of the potential bar
@15#. In this case the soliton tunneling does not exist. As
have shown, for the soliton tunneling~among other condi-
tions! it is necessary to have a soliton moving in a poten
well where V(x) takes values~out of the potential well!
greater than that of the barrier. Nevertheless, with locali
impurities such as the ones introduced in Eq.~5!, the soliton
tunneling can also be observed. This is possible with a p
turbationU(x) with the features shown in Fig. 6. Even i
this case, if the soliton moves from the left~in zoneA) with
sub-barrier kinetic energy, then the soliton tunneling do
not occur. For the tunneling, the soliton should be placed
zoneB. Of course, the rest of the conditions should be s
isfied.

The sine-Gordon soliton usually is thought to be a ve
pointlike object. In fact, the unperturbed sine-Gordon eq
tion is integrable and its soliton solution does not have d
crete, internal~shape! modes. Nevertheless, when the pertu
bations are not given by Dirac’sd functions, the sine-Gordon
soliton also is able to excite a great number of shape mo
@21# and behaves as an extended object.

FIG. 5. Disordered array of inhomogeneities. The soliton c
move through the whole array.
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Consider the perturbed sine-Gordon equation

f tt2fxx1sinf5F~x!, ~7!

where

F~x!55
2F0 for x,x0

a

cosh2~bx!
2F0* for 2x0<x<x0

2F0 for x.x0 ;

~8!

x0 andF0* are chosen such that the functionF(x) is continu-
ous.

FIG. 6. Combination of impurities for Eq.~5!. The soliton tun-
neling with sub-barrier kinetic energy is possible from zoneB to
zoneC.
D

t

,

Let us see only two examples; letF050.25 andb50.55
~fixed!. For a50.45, the soliton remains trapped in the p
tential well; it behaves classically. Fora50.35, the soliton
escapes from the potential well, crossing the barrier.
should emphasize that in both cases the forceF(x) would
correspond to a system with a potential well and a barrie
the soliton behaves classically.

We would like to remark that, in our study, the positio
ing of the soliton at a certain point is done considering
equation of motion. The initial configuration is always a s
lution of the equation of motion~we can use either the
static or the time dependent solution, depending on
physical process that led to the given situation!. That is, we
never use an initial configuration that the soliton cann
reach by any means. For example, let us explain a phys
situation in which the soliton can be positioned inside t
potential well depicted in Fig. 1. Suppose a soliton is ca
tured by a localized inhomogeneity~there are many such
situations discussed in the review paper@6# and the experi-
mental papers quoted therein!. Then, we apply an externa
constant force~e.g., for the Josephson fluxon@5# this is a dc
bias current!. In that case, the soliton can be placed
an effective potential similar to that shown in Fig. 1.
it had lost all of its kinetic energy@22,6#, then we could
use the static soliton as an initial condition. In fact, w
think that the conditions for soliton tunneling cou
have been satisfied in the experimental situation describe
@22#.

We conclude that the phenomenon of soliton tunneling
robust and generic. We believe this phenomenon can be
served also in other physical systems bearing solitons, to
logical defects, vortices, spiral waves, etc.
rd,

ev.
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