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We present an extensive analytical and numerical study of the dynamics of kink solitons in Klein-Gordon
systems with nonlinear damping. Particularly, the nonlinear damping could model the interaction of the soli-
tons with an active medium. We analyze the existence and stability conditions of stationary states for the
soliton. We present a different kind of bifurcation: a structure-breaking bifurcation. After this bifurcation the
soliton enters a highly nonstationary state~solitonic explosion!. We show the existence of self-sustained
oscillations of solitons~solitonic limit cycles!. Finally, we present chaotic motion of solitons similar to the
Duffing–Van der Pol type.@S1063-651X~96!05707-8#

PACS number~s!: 05.45.1b, 52.35.Sb, 52.35.Mw, 02.30.Jr

I. INTRODUCTION

The nonlinear Klein-Gordon-like equations model a wide
variety of physical situations and have received a great deal
of attention in recent years. The dynamics of Klein-Gordon
solitons or kinks in the presence of external forces@1,2#,
impurities@3,4#, or heat baths@5,6# represents real condensed
matter systems and phenomena.

Self-excited oscillations are a fascinating feature of the
nature; this phenomenon is exhibited by certain simple sys-
tems with one degree of freedom@7# as well as by coupled
oscillators@7,8# and continuous systems@7,9#. Self-excited
motion of solitons has been studied@4# for the Korteweg–de
Vries and the nonlinear Schro¨dinger equations.

In this paper we study the self-sustained motion of the
Klein-Gordon soliton@10–18# in an active medium in the
presence of nonlinear damping that can pump energy into the
system. We analyze the sufficient condition for the existence
of a whole discrete spectrum of stationary velocities for the
soliton ~even in the absence of external forcing! as well as
the sufficient condition for the existence of a different
structure-breaking bifurcation. Furthermore, we introduce
the soliton limit cycle and explore the modeling of chaotic
motion for the active Klein-Gordon system.

Our paper is organized as follows. In Sec. II we present a
description of our model. In Sec. III the existence of soliton
stationary states is analyzed and the exact solution of a par-
ticular case is considered. In Sec. IV we discuss the differ-
ences between the structure-breaking bifurcation for active
Klein-Gordon systems and a similar bifurcation for forced
Klein-Gordon systems with linear damping. In Sec. V we
present soliton limit cycles and soliton explosions in the
presence of a spatially inhomogeneous driving force. In Sec.
VI we present the chaotic behavior of the soliton obtained by
pumping energy into the translational mode of the kink. Fi-
nally, in Sec. VII we summarize and discuss our results and
also present some concluding remarks. In the Appendix we
outline the numerical method.

II. SOLITONS IN ACTIVE MEDIA

We are interested in soliton dynamics sustained by the
interaction with an active medium in the absence of a driving
force. This situation can be modeled by a Klein-Gordon-like
system with nonlinear damping

fxx2f tt2R~f,f t!1G~f!50, ~1!

whereG(f)52dU(f)/df, U~f! being the nonlinear po-
tential, andR(f,f t) is the damping term, which can be a
nonlinear function off andft and will introduce negative
damping effects that will give energy to the soliton. In order
to ensure the existence of solitonic solutions@12# we assume
that the potentialU~f! is an analytical function off and that
it possesses at least two minima at pointsf1 andf3 and a
maximum at the pointf2, f1,f2,f3. We also assume that
there are no other extrema in the intervalf1,f,f3,
U(f1)5U(f3)50, andR~f,0!50.

Equation~1! can be realized by considering the lumped
transmission-line circuit presented in Fig. 1~a!. Figure 1~b!

FIG. 1. Active transmission line.~a! Element of the lumped
transmission-line circuit; 1/g is the nonlinear resistance.~b! Nega-
tive resistance twin-tunnel-diode circuit.~c! Nonlinear characteris-
tic of the negative-resistance oscillator.
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presents the negative-resistance twin-tunnel diode circuit; al-
ternatively, a twin-transistor circuit can be employed@19#.
Figure 1~c! shows the nonlinear driving-point characteristic
that is described @19# by the function i5gv ~here
g52B1Av2!. Note that the element of the lumped
transmission-line includes a Josephson junction~or its analog
equivalent! whose supercurrent is described by two basic Jo-
sephson relations

j5 j 0 sin f, ~2a!

]f

]T
}V, ~2b!

whereV is the voltage andf is the difference between the
phases of the order parameters of the two superconductors
layers of the junction. The equation of motion of the param-
eterf is

f tt2fxx1a~f t!
32bf t1sin f50, ~3!

where time and space are measured in their natural units, so
the equation is dimensionless~a andb are constants!. More-
over, considering a coupled chain of Froude pendulums@20#
leads to an expression like Eq.~3!. Other nonlinear damping
mechanisms are possible for the Josephson junction; for in-
stance, assuming that the resistance varies with the voltage, a
quadratic damping mechanism has been proposed@21,22#.

III. SELF-SUSTAINED SOLITON MOTION

In this section we are concerned with the final dynamical
state of a Klein-Gordon kink in the presence of nonlinear
damping. For particular cases we give approximate and exact
solutions.

A. Structure-breaking bifurcation

Solitons that move without change of shape and velocity
@12,15,17,18# correspond to solutions of the equation

fzz2R~f,2wfz!1G~f!50 ~4!

~here z5x2vt/A12v2 and w5v/A12v2, v being the
speed of the soliton! that satisfies the relation

E
2`

`

R~f,2wfz!fzdz50. ~5!

States of soliton movement with constant velocity and shape
@10–18# are possible only if the equation

S~w!52E
f1

f3
R@f,2wA2U~f!#df50 ~6!

has a real solution with respect tow. Each real solution of
Eq. ~6! corresponds to a possible stationary state of the soli-
ton. For smallR, from Eq.~6! the velocitiesv of the solitons
in these states can be calculated approximately.

FIG. 2. f4 soliton in an active medium. Also shown is the tem-
poral series for the center of mass of the soliton.~a! The kink
reaches its stationary velocity before striking at the border of the
system. Several initial velocities are considered.~b! The kink ex-
plodes very far from the edge of the system.

FIG. 3. ~a!–~d! Soliton explosion. Spatial profiles@f(x) vs x#
corresponding to successive stages of the soliton destabilization.
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If w0 corresponds to a stationary velocityvstat(w0

5vstat/A12vstat
2 ) of the soliton, it is stable if

S ]S~w!

]w D
w5w0

.0. ~7!

This condition holds for the stability if
R(f,f t)5R(2f,f t). When the values ofR are comparable
with the absolute values of extrema ofG~f! in the interval
f1,f,f3, a bifurcation can occur, after which the exist-
ence of the stationary statew0 of the soliton is impossible. A
sufficient condition for the bifurcation to have not occurred
is that the inequality

U~f!1E
f1

f

R@f,2w0A2U~f!#df.0 ~8!

holds in the intervalf1,f,f3.
Let Rm andGm be the absolute extreme values ofR@f,

2w0A2U(f)# andG~f! in the intervalf1,f,f3. Then
the inequality

Rm.Gm ~9!

is a sufficient condition for the existence of the bifurcation.
We would like to call this astructure-breaking bifurcation.

In an equation less general than Eq.~1!,

fxx2f tt2R~f t!1G~f!50, ~10!

whereR(f t! does not depend explicitly onf, a necessary
condition for the existence of stationary soliton states is that
R(f t) has zeros. Each zero corresponds to a possible station-
ary state. Nevertheless, this condition is not sufficient.

Let us suppose thatR(f t) is odd and has three zeros as in
the case of Eq.~3!. The state of rest of the soliton always
exits. But the other two stationary states, in which the soli-
tons have positive and negative constant velocities, are pos-
sible only if Rm is lower than a certain threshold value.
When these two nontrivial velocities exist, they are stable.
Meanwhile, the zero-velocity state is unstable.

Let us study the specific case of Eq.~3!. For small values
of b/a the stationary velocities of the solitons can be calcu-
lated by the formulas

w01
50, ~11a!

w02
5S 32 b

aD
1/2

, ~11b!

w03
52S 32 b

aD
1/2

, ~11c!

which are the roots of Eq.~6!. According to Eq.~9!, when

b3

a
.
27

4
, ~12!

the bifurcation has already occurred and there are no non-
trivial stationary states.

The value ofw corresponding to a stationary velocity of
the soliton initially grows linearly with respect to (b/a)1/2.

Later the growth is steeper, and whenb reaches the critical
value,w tends to infinity. This means that the soliton reaches
its highest possible velocity~v51! for a finite value ofb/a.

Alternatively, we can consider thef4-type equation

fxx2f tt1bf t2a~f t!
31 1

2 ~f2f3!50. ~13!

In order to avoid the structure-breaking bifurcation, the fol-
lowing condition must be verified:

2bAb/a,1. ~14!

Figure 2~a! presents the temporal evolution of kinks with
several initial velocities~A51.0, B50.5, a50.2, b50.2,
x050.0, and lengthl5120.0!; it can be noted that for the
nonzero initial velocity cases the solitons acquires a constant
velocity before striking the border of the system. After this
collision, we have verified that there is a frustrated attempt to
reflect an anti-kink; nevertheless, what emerges after the col-
lision is again a kink. However, the reflected kink exhibits an
active exchange of energy between the traslational mode and
the internal modes~of the soliton! that precludes another
engagement of a constant velocity. Figure 2~b! presents, for
the same parameters butb52.0, the explosion of the soliton
when its center of mass is very far from the border of the
system and during the initial stages of the motion. Figures
3~a!–3~d! presents snapshots of the evolution of the spatial
profile in the case in which the soliton explodes, whereas
Fig. 4 shows the temporal evolution before and after the
soliton explosion.

B. Exact solution

In this section we present a case with an exact solution.
Consider Eq.~1! in the particular case in which

R~f,f t!52bf t1a~f t!
3, ~15!

2G~f!5A1f1A3f
31A5f

51A7f
71A9f

9. ~16!

The stationary solitons for this case are solutions of the equa-
tion

fzz1R~fz!1G~f!50, ~17!

whereR(fZ)52dfz1g(fz)
3, d5bw andg5aw3.

Following the method developed by Otwinowski, Paul,
and Laidlaw@23#, it is possible to obtain exact solutions of
Eq. ~17! when the parameters of the system fulfill certain
requirements. If

fz5«1f1«3f
3, ~18!

where«1 and«3 are unknown parameters, then it is possible
to integrate Eq.~17! in quadrature. For a solutions to exist
satisfying Eq.~18!, it is necessary that«1 and«3 satisfy the
system of algebraic equations

A15«1
22d«1 , ~19a!

A354«1«32d«1
32d«3 , ~19b!

A553«3
213g«1

2«3 , ~19c!
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A753g«1«3
2, ~19d!

A95g«3
3. ~19e!

We have to make the adjustment of the parameters«1, «3,
andw, so there are only three independent parametersAi .
For simplicity we choose as independent parametersA5, A7,
andA9. Then parameters«1 and«3 can be calculated by the
formulas

«1
25

1

9 SA7

A9
D 2SA5A92A7

2

3A9
D 2, ~20a!

«3
25SA5A92A7

2

3A9
D 2. ~20b!

We are interested in the kink soliton due to a connection
between pointsf150 andf3, which is the closest minimum
of the potentialU~f! ~there can be other minima!. Actually,
the potential is symmetrical around zero, so when there is a

connection betweenf150 andf3 there is also a connection
betweenf150 and2f3. In fact,

f356S 2
«1
«3

D 1/256S 2
A7

3A9
D 1/2. ~21!

It is now evident that these parameters must satisfy the
following relationships for the soliton to exist:

«1«2,0, ~22a!

A7A9,0, ~22b!

A9~A9A52A7
2!,0. ~22c!

On the other hand, if we require equal height of the minima
of U~f!,

U~f1!5U~f3!50, ~23!

thenw is solution of

bw1Paw350, ~24a!

P5
A7
3

270A9
3 SA5A92A7

2

3A9
D . ~24b!

The parametersA1 andA3 will appear as functions of the rest
of the parameters through Eqs.~19a!, ~19b!, ~20!, and ~24!.
The exact solution is

f5
f3

A11e22«1z
. ~25!

Note that the soliton can have three different stationary ve-
locities that are solutions of Eq.~24!. However, there is a
condition for parametersa andb,

b3

a
,

A7
3

729A9
3 ~A5A92A7

2!, ~26!

which is equivalent to the restrictions imposed above@Eqs.
~9! and~12!# on a andb. We stress the fact that given fixed
A5, A7, andA9, for large values ofbAb/a there is no sta-
tionary soliton.

IV. LINEAR VS NONLINEAR DAMPING

It is interesting to compare the type of bifurcation that we
have uncovered with a different kind of bifurcation that does
not allow the existence of stationary solitons in systems with
an external perturbation@14,24#. The most simple case is

fxx2f tt2gf t1
1
2 ~f2f3!52F. ~27!

whenF2, 1
27 there is a stationary velocity for the soliton, but

whenF2. 1
27 the stationary soliton is not longer possible.

For the sine-Gordon-like equation

f tt2fxx2gf t1sin f52F ~28!

the critical value isF251. The explanation of this phenom-
enon is that a system described by Eq.~1! must have at least

FIG. 5. Soliton limit cycle.~a! Time seriesxc.m. vs t for the
position of the center of mass of the soliton in the absence of ex-
ternal forcing.~b! Phase spacevc.m. vs xc.m. showing transient be-
havior towards a limit cycle.
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three fixed points~two of them stable! for solitons to be able
to exist@20,14–18,23#. WhenF2. 1

27 two of the fixed points
of Eq. ~27! disappear and therefore the solitons cannot exist.
In contrast, even when the condition expressed by Eq.~9! is
fulfilled, the system@Eq. ~10!# has all its fixed points in their
place. Given Eq.~9!, the perturbation can destabilize the
soliton without destroying the stable phases of the system.
Other results@12,15,24# lead to the idea that the internal
structure of the soliton cannot resist in a stable way any
external force greater than a certain critical value, even when
the fixed points of the system are conserved.

In systems of the kind described by Eq.~3!, as well as in
systems of the type given by Eqs.~27! and ~28!, there is
damping and pumping at the same time. Common sense tells
us to expect some compromise between these opposing ac-
tions at a certain velocity~this is the case before the bifur-
cation!. But under certain conditions, this compromise is im-
possible. This may be a universal phenomenon in extended
spatiotemporal structures with internal dynamics. While the
soliton is in one of the stationary states it preserves its shape
and velocity without changes.

We have to stress that in the case given by Eq.~3! the
fixed points are locally unstable due to the negative damping
in their neighborhood. So, after perturbations the tails of the
soliton will perform self-sustained small oscillations. But the
soliton as a whole will move with almost constant velocity.
We must stress also the point that unlike systems with linear
damping, in our system the soliton can have a whole discrete
spectrum of stationary velocities.

V. SOLITON LIMIT CYCLES

Historically, linear equations were used to describe self-
excited electrical oscillations. Only the introduction of limit
cycles in the theory of electrical oscillations made possible
the construction of models describing all the properties of the
phenomena@25#.

Like the harmonic oscillator, the classical integrable equa-

tions that exhibit solitons~Korteweg–De Vries, sine-Gordon,
etc.! are structurally unstable. The real quasistationary soli-
tons must be described by models that include spatiotempo-
ral attractors as self-sustained solitons.

Recent studies@14,24# of the dynamics of solitons under
the action of external forces have shown that equations of the
type

fxx2f tt2gf t1G~f!52F~x! ~29!

have solutions that describe solitons whose centers of mass
perform damped oscillations around certain stable equilib-
rium positions that are located in certain zerosx0 of F(x)
@F(x0)50#. Now we can state that if the system, in addition
to an external nonhomogeneous forceF(x) ~with a stable
zero!, has nonlinear damping,

fxx2f tt2R~f,f t!1G~f!52F~x!, ~30!

then the center of mass of the soliton can perform self-
sustained oscillations: we are in the presence of a soliton
limit cycle. An example of an equation with this property is

FIG. 6. ~a!–~d! Soliton explosion. Spatial profiles@f(x) vs x#
corresponding to the final stages of the soliton destabilization.

FIG. 7. Fractal supertorus.~a! Poincare´ map for the temporal
evolution of the center of mass of the soliton.~b! Corresponding
phase plane.
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fxx2f tt1bf t2a~f t!
31 1

2 ~f2f3!

5B~124B2!tanh~Bx!, ~31!

where 4B2.1. Here we have used the inhomogeneous static

force introduced in Ref.@24# for which the exact stability
problem has been solved. In order to avoid the bifurcation
described above, we need the fulfillment of the condition
~14!.

Another kind of soliton limit cycle can be found in equa-
tions of the type

fxx2f tt2G~x!f t1G~f!52F~x!, ~32!

where the damping coefficient is a function ofx and has
intervals of negative and positive values. For instance,

fxx2f tt2G~x!f t1
1
2 ~f2f3!5B~124B2!tanh~Bx!,

~33!

whereG(x)5g@12L/cosh2(Dx)#, 12L,0.
Figure 5~a! presents the temporal series for the onset of

self-sustained oscillations of the center of mass of the soli-
ton, whereas Fig. 5~b! presents the corresponding phase-
space portrait~A51.3, B50.65, g50.15, L52.0, D50.65,
x050.0, v050.0, and lengthl520.0!. The solution evolves
out from an unstable focus towards a limit cycle. We remark
that the solution corresponds to the periodic motion of a
soliton.

It is interesting that when

g~L21!.
1

3)
~34!

we will observe a soliton explosion due to the structure-
breaking bifurcation as shown in Fig. 6, where we present a
sequence of snapshots of the spatial profilef(x) vs x reveal-
ing loss of the kink topology~all parameters are the same as

FIG. 4. Soliton explosion. Temporal evolution of the solution.
Areas depicted with blue correspond to lower values of the profile,
whereas yellow and red areas denote higher values. The kink profile
therefore can be identified at earlier times.

FIG. 8. Spatiotemporal evolution corresponding to the fractal
supertorus attractor. Violet and blue denote lower values of the
solutionf(x,t), whereas yellow and red depict higher values of the
solution.

FIG. 10. High-dimensional chaotic motion of one soliton. Spa-
tiotemporal evolution of the soliton. Blue and green denote lower
values of the solutionf(x,t), whereas yellow and red correspond to
higher values.
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in the previous case exceptg50.25 andL56.0!, i.e., the
soliton used as initial condition has been destabilized due to
the constraints and conditions imposed on the system. Time
series also reveal that the position and the velocity of the
center of mass of the solution are practically zero at all times
except while the soliton explodes.

VI. CHAOTIC SOLITONS

We are concerned with controlling the dynamic behavior
of solitons: this can be achieved with the knowledge of the
effect of every term that is introduced in the equations. In
this respect, the chaotic behavior of solitons has been previ-
ously predicted@15,24# and verified@26# in equations like
Eq. ~29! when F(x) has two stable zeros and there is an
additional time-periodic force acting on the system. In such a
case the behavior of the soliton is similar to the motion of a
particle in Duffing’s equation with two stable equilibrium
positions.

Consider the following system, which represents an equa-
tion of the type given by Eq.~32! perturbed by a time-
periodic force:

fxx2f tt2G~x!f t1
1
2 ~f2f3!5 1

2A~12A2!tanh3~Bx!

1g
cos~Vdt !

cosh2~Bx!
, ~35!

whereG(x) is defined as in Eq.~33!. Here we have intro-
duced an inhomogeneous static forcing proportional tox3

near zero in order to have a Duffing-like force~this is ob-
tained whenB5 1

2 in the inhomogeneous static force intro-
duced in Ref.@24#!. The particular time-dependent force se-
lected pumps energy only into the translational mode of the
kink; this is due to the fact that this force is fitted to the
shape of the translational mode@24#.

For some set of parameters Eq.~35! will have complex
dynamics of the center of mass of the soliton similar to the
behavior of ac-driven Duffing–Van der Pol equation@27#. In
addition to the natural frequency of the system~the one that
arises from the soliton limit cycle! there is the frequency of
the time-dependent force. Quasiperiodic behavior can be ex-
cited if these frequencies are incommensurable. Notwith-
standing, even richer dynamical behavior can also be exhib-
ited by the system. Figure 7~a! presents the Poincare´ map for
the center of mass of the soliton, which reveals afractal
supertorus~A53.0,B50.5, g50.1, L53.0,D50.6, g51.0,
Vd50.65, x050.0, v050.1, and lengthl560.0!. It can be
appreciated that the destruction of a central torus~it is no
longer a closed curve! has given rise to a new and larger
ramified structure; notice the dendritic patterns. Figure 7~b!
presents the corresponding phase plane; the forbidden central
region is due to the presence of an unstable focus~the same
involved in the creation of the soliton limit cycle that be-
comes a quasiperiodic attractor when the time-dependent
force is introduced!. Finally, spiral escaping orbits corre-
sponding to unstable trajectories can be appreciated.

We stress that this strange attractor corresponds to chaotic
motion of a kink soliton around its equilibrium position as
presented in Fig. 8. We have verified that the soliton pre-
serves its structure despite the chaotic appearance and disap-
pearance of minor protuberances due to the excitation of

FIG. 9. ~a! Poincare´ map revealing the high-dimensional chaotic
motion of one soliton.~b! Corresponding phase spacevc.m. vs xc.m..

FIG. 11. ~a!–~d! High-dimensional chaotic motion of the soli-
ton. Snapshots of the solution.
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shape modes@24#. The chaos in the shape coexists with the
chaotic motion of the soliton. However, we emphasize that
the chaos in form plays a minor role in the case of the fractal
supertorus.

DecreasinguAu leads to a destabilization of the soliton
motion @24#. ForA51.5 ~the rest parameters are the same as
the previous case! the Poincare´ map @Fig. 9~a!# reveals an
activation of a larger number of effective degrees of free-
dom, which increases the dimension of the attractor and re-
sults in the complete destruction of the fractal supertorus
attractor. Since we are monitoring, in our plots, the dynamics
of the center of mass, the high dimension of these Poincare´
maps can be ascribed to symmetry breaking of the profile
associated with the excitation of the internal modes. Figure
10 presents the temporal evolution of the soliton, whereas
Figs. 11~a!–11~d! show snapshots of the corresponding pro-
files revealing an increased excitation of shape modes while
the kink profile is still sustained.

In order to clarify the mechanisms that are involved in the
appearance of the attractor of Fig. 9 we setL50: this
amounts to ceasing the pumping of energy and allows the
unveiling of the underlying ‘‘Duffing-like’’ dynamics of the
soliton. Figure 12~a! presents the phase plane forA51.5 and
L50 ~the rest parameters remain unchanged!; this phase

plane corresponds to the dynamics of the center of mass and
shows a high-period solution in contrast with the chaotic
motion presented in Fig. 9~b! for L53.0. Notice that the
internal modes are no longer excited. Diminishingg in the
intervalg50.125 to 0.096 leads the oscillations of the soliton
from period one to chaos through a rich sequence of bifur-
cations as shown in Figs. 12~b! and 12~c! for three selected
solutions atg50.118, 0.109, and 0.106.

The underlying mechanism of the fractal supertorus~Fig.
7! then becomes clear. This attractor results from the combi-
nation of two types of chaos: the Duffing-like chaos and the
chaos resulting from the time-periodic perturbation of the
~self-sustained! limit cycle. Decreasing the parameterA re-
sults in the destruction of the fractal supertorus since the
Duffing-like chaos then leads the dynamics.

VII. SUMMARY AND CONCLUSIONS

In this paper we have presented the self-sustained soliton
as an interesting paradigm of real solitons. We have shown
that the oscillation of a soliton exhibits a surprising richness
and brings different spatiotemporal phenomena.

We have predicted the destruction or the preservation of a
kink profile by an active Klein-Gordon system. We stress

FIG. 12. ‘‘Duffing-like’’ dynamics of the soliton.~a! Phase plane corresponding to a high-period oscillation of the soliton~g50.1,
L50.0!. ~b!–~d! Solutions forg50.118, 0.109, and 0.106, respectively.
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that our analytical results made us able to predict the peri-
odic, quasiperiodic, and chaotic motion of a soliton as well
as some of the general features of such chaotic motion. We
have also presented an alternative spatiotemporal dynamics
in which two types of chaos collide while they describe the
oscillation of the center of mass of a soliton.

The soliton limit cycle might provide a versatile source of
radiation. The discrete spectrum of velocities for the soliton
also presents practical importance as it allows the soliton to
jump between several states.
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APPENDIX

We have integrated ourf4-like equations using a standard
implicit finite-difference method. In this paper we employed

open boundary conditionsfx(0,t)5fx( l ,t)50. We have
used 0.035 for the time step and 0.039 for the space step.

Our numerical integrations were started using a kink soli-
ton as the initial condition:

f~x,0!5A tanhFB~x2x0!

A12v0
2 G , ~A1!

f t~x,0!5
2ABv0
A12v0

2
cosh2FB~x2x0!

A12v0
2 G , ~A2!

whereA andB are constants andx0 andv0 are, respectively,
the initial position and velocity of the center of mass of the
soliton. We have defined the position of the center of mass of
the kink soliton as

xc.m.5

E
2 l /2

l /2

x~fx!
2dx

E
2 l /2

l /2

~fx!
2dx

, ~A3!

wherel is the length of the system.
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