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Self-excited soliton motion

J. A. Gonzéez
Departamento de Bica, Universidad de Camagy, Circunvalacia Norte, Camagey 74650, Cuba

L. E. Guerrero and A. Bellon
Centro de Fsica, Instituto Venezolano de Investigaciones Ciimats, Apartado 21827, Caracas 1020 A, Venezuela
(Received 14 December 1994; revised manuscript received 13 February 1996

We present an extensive analytical and numerical study of the dynamics of kink solitons in Klein-Gordon
systems with nonlinear damping. Particularly, the nonlinear damping could model the interaction of the soli-
tons with an active medium. We analyze the existence and stability conditions of stationary states for the
soliton. We present a different kind of bifurcation: a structure-breaking bifurcation. After this bifurcation the
soliton enters a highly nonstationary stdtmlitonic explosion We show the existence of self-sustained
oscillations of solitongsolitonic limit cycles. Finally, we present chaotic motion of solitons similar to the
Duffing—Van der Pol type[S1063-651X96)05707-9

PACS numbg(s): 05.45:+b, 52.35.Sb, 52.35.Mw, 02.30.Jr

I. INTRODUCTION II. SOLITONS IN ACTIVE MEDIA

We are interested in soliton dynamics sustained by the
The nonlinear Klein-Gordon-like equations model a wideinteraction with an active medium in the absence of a driving
variety of physical situations and have received a great dedprce. This situation can be modeled by a Klein-Gordon-like
of attention in recent years. The dynamics of Klein-Gordonsystem with nonlinear damping
solitons or kinks in the presence of external for¢&s2],
impurities[3,4], or heat bath§5,6] represents real condensed b du—R(b,¢) +G(¢) =0, @

matter systems and phenomena. whereG(¢)=—dU(¢)/d¢, U(¢) being the nonlinear po-

Self-excited oscillations are a fascinating feature of thetential andR(¢, é,) is the damping term, which can be a
. . . i . . y » Pt ’
nature,.thls phenomenon is exhibited by certain simple Sysy,pjinear function of¢ and ¢, and will introduce negative
tems with one degree of freedofi] as well as by coupled 5 mning effects that will give energy to the soliton. In order

oscillators[7,8] and continuous systenis,9]. Self-excited 5 gnsyre the existence of solitonic soluti¢ag] we assume
motion of solitons has been studipd for the Korteweg—de  that the potentiall (¢) is an analytical function of and that
Vries and the nonlinear Schdimger equations. it possesses at least two minima at poitsand ¢ and a

In this paper we StUdy the self-sustained motion of th&naximum at the pointl‘)z, 1 <,<¢h3. We also assume that
Klein-Gordon soliton[10-1§ in an active medium in the there are no other extrema in the interval<¢<ds,
presence of nonlinear damping that can pump energy into thig (¢,) = U(¢3) =0, andR(¢,0)=0.
system. We analyze the sufficient condition for the existence Equation(1) can be realized by considering the lumped
of a whole discrete spectrum of stationary velocities for thetransmission-line circuit presented in Figial Figure Xb)
soliton (even in the absence of external forciras well as
the sufficient condition for the existence of a different
structure-breaking bifurcation. Furthermore, we introduce (a)
the soliton limit cycle and explore the modeling of chaotic
motion for the active Klein-Gordon system. Cdx

Our paper is organized as follows. In Sec. Il we present a
description of our model. In Sec. Il the existence of soliton L. 1 .
stationary states is analyzed and the exact solution of a par-
ticular case is considered. In Sec. IV we discuss the differ-
ences between the structure-breaking bifurcation for active (b) (C) lg
Klein-Gordon systems and a similar bifurcation for forced
Klein-Gordon systems with linear damping. In Sec. V we
present soliton limit cycles and soliton explosions in the
presence of a spatially inhomogeneous driving force. In Sec.
VI we present the chaotic behavior of the soliton obtained by
pumpi-ng energy into the tran_S|ational ,mOde of the kink. Fi- FIG. 1. Active transmission line(a) Element of the lumped
nally, in Sec. VIl we summarize and discuss our results angh,nsmission-line circuit; ¥/ is the nonlinear resistancéh) Nega-
also present some concluding remarks. In the Appendix W@ye resistance twin-tunnel-diode circuit) Nonlinear characteris-
outline the numerical method. tic of the negative-resistance oscillator.
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presents the negative-resistance twin-tunnel diode circuit; alwhere time and space are measured in their natural units, so
ternatively, a twin-transistor circuit can be employd®].  the equation is dimensionlets andb are constanjs More-
Figure 1c) shows the nonlinear driving-point characteristic over, considering a coupled chain of Froude pendul[20%
that is described[19] by the function i=gv (here leads to an expression like E@). Other nonlinear damping
g=-B+Av?. Note that the element of the lumped mechanisms are possible for the Josephson junction; for in-
transmission-line includes a Josephson junct@rits analog  stance, assuming that the resistance varies with the voltage, a
equivalent whose supercurrent is described by two basic Joguadratic damping mechanism has been propf2&@2.
sephson relations

Ill. SELF-SUSTAINED SOLITON MOTION

J=Josin ¢, (23 In this section we are concerned with the final dynamical
state of a Klein-Gordon kink in the presence of nonlinear

% "y (2b) damping. For particular cases we give approximate and exact
oT ’ solutions.
whereV is the voltage andp is the difference between the A. Structure-breaking bifurcation

phases of the order parameters of the two superconductors spjitons that move without change of shape and velocity
layers of the junction. The equation of motion of the param{12 15 17,18 correspond to solutions of the equation

eterg is
b2~ R(p,—We,) +G(4)=0 (4)
— yxt a3 —be+sin =0, 3
Pu= boctald) b ¢ ® (here z=x—vt/\1—v2 and w=v/\1-v?, v being the
| . ' ' speed of the solitgnthat satisfies the relation
40+ (a) oc
1 Jl R(¢,—wWde,) $,dz=0. (5
20 L _ . .
States of soliton movement with constant velocity and shape
[10-1§ are possible only if the equation
£ 2
; 0 #3
S(w)=— J(ﬁ Rl#,—wy2U(¢)]dp=0 (6)
1
20 - - ; ;
3 has a real solution with respect to. Each real solution of
Eq. (6) corresponds to a possible stationary state of the soli-
40+ | ton. For smalR, from Eq.(6) the velocitiesy of the solitons
: . : : in these states can be calculated approximately.
0 20 40 60 80 100
time
1 1 1 1 1 1 1 3 (0) 3 (b)
25 (b) |
2.0 | - —/—
< 0 ©0
1.5 ‘ L
g |
[ -3 B -
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FIG. 2. ¢* soliton in an active medium. Also shown is the tem- h XO B X

poral series for the center of mass of the solit@. The kink
reaches its stationary velocity before striking at the border of the
system. Several initial velocities are consideréa. The kink ex- FIG. 3. (a)—(d) Soliton explosion. Spatial profildsh(x) vs x]
plodes very far from the edge of the system. corresponding to successive stages of the soliton destabilization.
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If wy corresponds to a stationary velocityg.(w,  Later the growth is steeper, and whierreaches the critical

= Vgl V1—v2,) Of the soliton, it is stable if value,w tends to infinity. This means that the soliton reaches
its highest possible velociti =1) for a finite value ofb/a.
(&S(W)) -0 R Alternatively, we can consider th¢*-type equation
W '
W=%o bxx— Putbd—ale)’+3(d—¢%)=0. (13

This  conditon  holds for the stability if |, order to avoid the structure-breaking bifurcation, the fol-
R(#,$)=R(— ¢,¢y). When the values dR are comparable |oying condition must be verified:
with the absolute values of extrema G{¢) in the interval

$<¢p<d4, a bifurcation can occur, after which the exist- 2bvbl/a<1. (14)
ence of the stationary state, of the soliton is impossible. A
sufficient condition for the bifurcation to have not occurred  Figure Za) presents the temporal evolution of kinks with

is that the inequality several initial velocities(A=1.0, B=0.5, a=0.2, b=0.2,
. Xo=0.0, and lengtH =120.0; it can be noted that for the
EYNCTIT S nonzero initial velocity cases the solitons acquires a constant
U(g)+ L)lR[d)’ Wov2U(4)]d¢=>0 ® velocity before striking the border of the system. After this
) _ collision, we have verified that there is a frustrated attempt to
holds in the intervakp, <¢<¢s. reflect an anti-kink; nevertheless, what emerges after the col-
Let Ry, and G, be the absolute extreme valuesRif¢, |ision is again a kink. However, the reflected kink exhibits an
—Wov2U(¢)] and G(¢) in the interval ¢;<¢p<é3. Then  active exchange of energy between the traslational mode and
the inequality the internal modegof the soliton that precludes another

engagement of a constant velocity. Figue)2resents, for
the same parameters but=2.0, the explosion of the soliton
when its center of mass is very far from the border of the
system and during the initial stages of the motion. Figures
3(a)—3(d) presents snapshots of the evolution of the spatial
profile in the case in which the soliton explodes, whereas
Gux— dr—R(P) +G(p)=0, (10) Fig. 4 shows the temporal evolution before and after the
soliton explosion.
where R(¢,) does not depend explicitly oth, a necessary

Rn>Gn, 9

is a sufficient condition for the existence of the bifurcation.
We would like to call this astructure-breaking bifurcation
In an equation less general than Eg),

condition for the existence of stationary soliton states is that B. Exact solution
R(¢;) has zeros. Each zero corresponds to a possible station- . ) ) .
ary state. Nevertheless, this condition is not sufficient. In this section we present a case with an exact solution.

Let us suppose th&(¢,) is odd and has three zeros as in Consider Eq(1) in the particular case in which
the case of Eq(3). The state of rest of the soliton always __ n 3
exits. But the other two stationary states, in which the soli- R($.d)=—beitale)”, (19
tons have positive and negative constant velocities, are pos- _ _ n 3, 5. 74 9
sible only if R, is lower than a certain threshold value. ClP)=ArdtAsp T Asp ™+ Arg'+ Agd”.  (16)
When these two nontrivial velocities exist, they are stablegne stationary solitons for this case are solutions of the equa-
Meanwhile, the zero-velocity state is unstable. tion
Let us study the specific case of E§). For small values
of b/a the stationary velocities of the solitons can be calcu- ¢,,+R(¢,)+G(¢)=0, (17)
lated by the formulas
whereR(¢,)=— 8¢, + y(¢,)3, 5=bw and y=aw’.
Wo, =0, (11a Following the method developed by Otwinowski, Paul,
and Laidlaw[23], it is possible to obtain exact solutions of

(3D 12 11b Eqg. (17) when the parameters of the system fulfill certain
Wo,= %3] (11b requirements. If
3 b\12 b, =e10+e3, (18)
Wo,=~|5 5/ - (119

whereg, ande; are unknown parameters, then it is possible
to integrate Eq(17) in quadrature. For a solutions to exist
satisfying Eq.(18), it is necessary that; and 5 satisfy the

3 27 system of algebraic equations

which are the roots of Eq6). According to Eq.(9), when

A1=si—581, (196)

the bifurcation has already occurred and there are no non- _ 3

trivial stationary states. Ag=4e 83— de1— deg, (19
The value ofw corresponding to a stationary velocity of ) )

the soliton initially grows linearly with respect td{a)*?. As=3e3t+3ysies, (199
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) L ! L { | . connection betweegh; =0 and ¢, there is also a connection

10 (q) F— betweeng,=0 and — ¢5. In fact,
¢ +( 81) 1/2 +( A7 )1/2 (21)
0.5 = S €3 T 3Ag)
) It is now evident that these parameters must satisfy the
5 00 ) } following relationships for the soliton to exist:
8182< O, (226)
0.5- - A,A4<0, (22b
Ag(AgAs— A2)<0. (220
-1.0 -
. . . ; . r On the other hand, if we require equal height of the minima
500 600 700 800 900 1000 1100 1200 of U(¢),

time

U(¢1)=U(¢3)=0, (23

thenw is solution of

bw+Paw’=0, (243

P (24b

A (A5A9—A§)
27073 37 |’
The parameterA; andA; will appear as functions of the rest

of the parameters through Eq4.93, (19b), (20), and (24).
The exact solution is

b3
b= (29
T T T T " T v1+ e 2812
-1.0 05 0.0 0.5 1.0
Xe.m. Note that the soliton can have three different stationary ve-

locities that are solutions of Eq24). However, there is a

FIG. 5. Soliton limit cycle.(a) Time seriesx., vst for the  condition for parametera andb,
position of the center of mass of the soliton in the absence of ex-

. . . 3
ternal forcing.(b) Phase space. ., vs X. . showing transient be- b3 Ay 2
havior towards a limit cycle. §<—72%g (AsAg— A7), (26)
A7:3yglg§, (199  which is equivalent to the restrictions imposed abpkgs.
(9) and(12)] on a andb. We stress the fact that given fixed
Ag= ysl. (198  As, Az, and Ay, for large values obyb/a there is no sta-
tionary soliton.
We have to make the adjustment of the parameters,,
andw, so there are only three independent parameters IV. LINEAR VS NONLINEAR DAMPING
Zﬁéimgﬁgz W;g:q%?gf a:;gdeizgdggtcg?éigfggr? 7t’he It is interesting to compare the type of bifurcation that we
formu?és P & &3 y have uncovered with a different kind of bifurcation that does
not allow the existence of stationary solitons in systems with
n external perturbatiofl4,24]. The m impl [
, 1(A7)2<A5A9—A§>2 08 an external perturbatiofi4,24. The most simple case is
1747 el —aar H
CAVY 3Aq bxx— bu—vdit+3(p—¢%)=—F. (27)
AcAq— A2\ 2 whenF2<% there is a stationary velocity for the soliton, but
2 59 A7 2.1 ; ; : ;
g5= (—) ) (20b) whenF“>3 the stationary soliton is not longer possible.
3Ag For the sine-Gordon-like equation
We are interested in the kink soliton due to a connection bii— dyx— YD+ Sin p=—F (28)

between pointgh; =0 and¢;, which is the closest minimum
of the potentiall (¢) (there can be other minimaActually,  the critical value isF?=1. The explanation of this phenom-
the potential is symmetrical around zero, so when there is anon is that a system described by Ef.must have at least
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(a) (b)
10 10
< 0 o 0
-10 -10
-10 0 10 -10 0 10
X X
(c) {d)
10 10
< 0 < 0
-10 -10
-10 0 10 -10 0 Is}
X X

FIG. 6. (a)—(d) Soliton explosion. Spatial profildsp(x) vs x]
corresponding to the final stages of the soliton destabilization.

three fixed pointgtwo of them stablefor solitons to be able

to exist[20,14—18,28 WhenF2> % two of the fixed points

of Eq. (27) disappear and therefore the solitons cannot exist.
In contrast, even when the condition expressed by(&qis
fulfilled, the systenjEq. (10)] has all its fixed points in their
place. Given Eq.9), the perturbation can destabilize the
soliton without destroying the stable phases of the system.
Other results[12,15,24 lead to the idea that the internal
structure of the soliton cannot resist in a stable way any

external force greater than a certain critical value, even when Xec.m.
the fixed points of the system are conserved. o
In systems of the kind described by Eg), as well as in FIG. 7. Fractal supertoruga) Poincaremap for the temporal

systems of the type given by Eq&7) and (28), there is evolution of the center of mass of the solitqh) Corresponding

damping and pumping at the same time. Common sense telf1ase plane.

us to expect some compromise between these opposing ac-

tions at a certain velocitythis is the case before the bifur- tions that exhibit solitongKorteweg—De Vries, sine-Gordon,

cation. But under certain conditions, this compromise is im-€tc) are structurally unstable. The real quasistationary soli-

possible. This may be a universal phenomenon in extende@ns must be described by models that include spatiotempo-

spatiotemporal structures with internal dynamics. While thgral attractors as self-sustained solitons.

soliton is in one of the stationary states it preserves its shape Recent studie§14,24 of the dynamics of solitons under

and velocity without changes. the action of external forces have shown that equations of the
We have to stress that in the case given by &y.the type

fixed points are locally unstable due to the negative damping

in their neighborhood. So, after perturbations the tails of the Dyx— P~ Y+ G()=—F(x) (29

soliton will perform self-sustained small oscillations. But the

soliton as a whole will move with almost constant veloCity. p5ye solutions that describe solitons whose centers of mass

We must stress also the point that unlike systems with lineage torm damped oscillations around certain stable equilib-
damping, in our system the soliton can have a whole d|scretﬁum positions that are located in certain zesgsof F(X)

spectrum of stationary velocities. [F(xo) =0]. Now we can state that if the system, in addition
to an external nonhomogeneous forleéx) (with a stable

V. SOLITON LIMIT CYCLES zerg, has nonlinear damping,
Historically, linear equations were used to describe self-
excited electrical oscillations. Only the introduction of limit bxx— Pu—R($, )+ G(¢)=—F(x), (30)

cycles in the theory of electrical oscillations made possible

the construction of models describing all the properties of thehen the center of mass of the soliton can perform self-

phenomen425]. sustained oscillations: we are in the presence of a soliton
Like the harmonic oscillator, the classical integrable equalimit cycle. An example of an equation with this property is
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time

;«———time

-60 - 30 O
X X
FIG. 4. Soliton explosion. Temporal evolution of the solution. FIG. 10. High-dimensional chaotic motion of one soliton. Spa-

Areas depicted with blue correspond to lower values of the profiletiotemporal evolution of the soliton. Blue and green denote lower
whereas yellow and red areas denote higher values. The kink profil¢alues of the solutiom(x,t), whereas yellow and red correspond to

therefore can be identified at earlier times. higher values.
byx— byt bd—al(d)3+3(p— o) force introduced in Ref[24] for which the exact stability
5 problem has been solved. In order to avoid the bifurcation
=B(1-4B")tanh(BXx), (3D described above, we need the fulfillment of the condition

where 82>1. Here we have used the inhomogeneous statiéld')' . . i .
Another kind of soliton limit cycle can be found in equa-

tions of the type

bxx— Pu—I'(X) p+G(h)=—F(x), (32)

where the damping coefficient is a function wfand has
intervals of negative and positive values. For instance,

bxx— Pu—T(X) i+ 3(p— ¢°)=B(1- 4Bz)tant{Bx)(,33)

whereI'(x) =y[1—L/cost(Dx)], 1—L<0.

Figure Ha) presents the temporal series for the onset of
self-sustained oscillations of the center of mass of the soli-
ton, whereas Fig. () presents the corresponding phase-
space portraifA=1.3, B=0.65, y=0.15,L=2.0, D=0.65,
Xp=0.0,v7=0.0, and lengtH =20.0.. The solution evolves
out from an unstable focus towards a limit cycle. We remark
that the solution corresponds to the periodic motion of a
soliton.

It is interesting that when

30 0 30

1
X 7(L_1)>ﬁ (39

FIG. 8. Spatiotemporal evolution corresponding to the fractaiwe Will observe a soliton explosion due to the structure-
supertorus attractor. Violet and blue denote lower values of théreaking bifurcation as shown in Fig. 6, where we present a
solution ¢(x,t), whereas yellow and red depict higher values of theSequence of snapshots of the spatial prafi{{®) vs x reveal-
solution. ing loss of the kink topologyall parameters are the same as
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(a)

24

7

FIG. 9. (a) Poincaremap revealing the high-dimensional chaotic
motion of one soliton(b) Corresponding phase spacgn VS X¢.m.-

in the previous case except=0.25 andL=6.0), i.e., the

soliton used as initial condition has been destabilized due to
the constraints and conditions imposed on the system. Time
series also reveal that the position and the velocity of the
center of mass of the solution are practically zero at all times

except while the soliton explodes.

VI. CHAOTIC SOLITONS

We are concerned with controlling the dynamic behavior
of solitons: this can be achieved with the knowledge of the 2 (c) 2 (d)
effect of every term that is introduced in the equations. In
this respect, the chaotic behavior of solitons has been previ-

bux— =T (X) p+3(p— ¢°) = 3A(1— A?)tank’(BX)
cogQ4t)
9 cosH(Bx)’

whereI'(x) is defined as in Eq(33). Here we have intro-
duced an inhomogeneous static forcing proportionakto
near zero in order to have a Duffing-like for¢this is ob-
tained whenB=3 in the inhomogeneous static force intro-
duced in Ref[24]). The particular time-dependent force se-
lected pumps energy only into the translational mode of the
kink; this is due to the fact that this force is fitted to the
shape of the translational mo{24].

For some set of parameters E5) will have complex
dynamics of the center of mass of the soliton similar to the
behavior of ac-driven Duffing—Van der Pol equat{@7]. In
addition to the natural frequency of the systéime one that
arises from the soliton limit cycjethere is the frequency of
the time-dependent force. Quasiperiodic behavior can be ex-
cited if these frequencies are incommensurable. Notwith-
standing, even richer dynamical behavior can also be exhib-
ited by the system. Figureg@ presents the Poincareap for
the center of mass of the soliton, which revealé$ractal
supertorus(A=3.0,B=0.5, y=0.1,L=3.0,D=0.6,g=1.0,
04=0.65, x,=0.0, v(y=0.1, and length =60.0. It can be
appreciated that the destruction of a central tajitiss no
longer a closed curyehas given rise to a new and larger
ramified structure; notice the dendritic patterns. Figuii® 7
presents the corresponding phase plane; the forbidden central
region is due to the presence of an unstable fdthe same
involved in the creation of the soliton limit cycle that be-
comes a quasiperiodic attractor when the time-dependent
force is introducef Finally, spiral escaping orbits corre-
sponding to unstable trajectories can be appreciated.

We stress that this strange attractor corresponds to chaotic
motion of a kink soliton around its equilibrium position as
presented in Fig. 8. We have verified that the soliton pre-
serves its structure despite the chaotic appearance and disap-
pearance of minor protuberances due to the excitation of

(39

2 (a) 2 (b)
© 0 < 0
-2 -2
-30 0 30 -30 0 30
X X

ously predicted[15,24 and verified[26] in equations like ) < 0

Eqg. (29 when F(x) has two stable zeros and there is an

additional time-periodic force acting on the system. In such a

case the behavior of the soliton is similar to the motion of a -2 -2

particle in Duffing’s equation with two stable equilibrium -30 0 30 -30 0 30
X X

positions.

Consider the following system, which represents an equa-

tion of the type given by Eq(32) perturbed by a time-
periodic force:

FIG. 11. (8)—(d) High-dimensional chaotic motion of the soli-
ton. Snapshots of the solution.
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FIG. 12. “Duffing-like” dynamics of the soliton(a) Phase plane corresponding to a high-period oscillation of the sdlifer®.1,
L=0.0. (b)—(d) Solutions fory=0.118, 0.109, and 0.106, respectively.

shape modef24]. The chaos in the shape coexists with theplane corresponds to the dynamics of the center of mass and
chaotic motion of the soliton. However, we emphasize thashows a high-period solution in contrast with the chaotic
the chaos in form plays a minor role in the case of the fractamotion presented in Fig.(B) for L=3.0. Notice that the
supertorus. internal modes are no longer excited. Diminishipgn the

Decreasing|A| leads to a destabilization of the soliton interval y=0.125 to 0.096 leads the oscillations of the soliton
motion[24]. For A=1.5 (the rest parameters are the same afrom period one to chaos through a rich sequence of bifur-
the previous cagethe Poincaremap [Fig. 9a)] reveals an cations as shown in Figs. @ and 1Zc) for three selected
activation of a larger number of effective degrees of free-solutions aty=0.118, 0.109, and 0.106.
dom, which increases the dimension of the attractor and re- The underlying mechanism of the fractal supertaifig.
sults in the complete destruction of the fractal supertorug) then becomes clear. This attractor results from the combi-
attractor. Since we are monitoring, in our plots, the dynamicsation of two types of chaos: the Duffing-like chaos and the
of the center of mass, the high dimension of these Poincarehaos resulting from the time-periodic perturbation of the
maps can be ascribed to symmetry breaking of the profiléself-sustainedlimit cycle. Decreasing the parametarre-
associated with the excitation of the internal modes. Figuresults in the destruction of the fractal supertorus since the
10 presents the temporal evolution of the soliton, wherea®uffing-like chaos then leads the dynamics.

Figs. 11a)—11(d) show snapshots of the corresponding pro-
files revealing an increased excitation of shape modes while
the kink profile is still sustained.

In order to clarify the mechanisms that are involved in the In this paper we have presented the self-sustained soliton
appearance of the attractor of Fig. 9 we $et0: this as an interesting paradigm of real solitons. We have shown
amounts to ceasing the pumping of energy and allows théhat the oscillation of a soliton exhibits a surprising richness
unveiling of the underlying “Duffing-like” dynamics of the and brings different spatiotemporal phenomena.
soliton. Figure 12a) presents the phase plane for-1.5 and We have predicted the destruction or the preservation of a
L=0 (the rest parameters remain unchangetlis phase kink profile by an active Klein-Gordon system. We stress

VIl. SUMMARY AND CONCLUSIONS
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that our analytical results made us able to predict the periopen boundary conditiong,(0t)= ¢.(l,t)=0. We have
odic, quasiperiodic, and chaotic motion of a soliton as wellused 0.035 for the time step and 0.039 for the space step.
as some of the general features of such chaotic motion. We Our numerical integrations were started using a kink soli-
have also presented an alternative spatiotemporal dynamit¢sn as the initial condition:

in which two types of chaos collide while they describe the

oscillation of the center of mass of a soliton. B(Xx—Xg)
The soliton limit cycle might provide a versatile source of #(x,00=A tan ﬁ ' (A1)
radiation. The discrete spectrum of velocities for the soliton 1-vp
also presents practical importance as it allows the soliton to
jump between several states. —ABuvg B(x—Xg)
di(x,0)= scostt = (A2)
V1-vg V1-vj
ACKNOWLEDGMENTS

This work has been partially supported by Consejo NacioWhereA andB are constants anxh andv are, respectively,
nal de Investigaciones Ciéfibas y Tecnolgicas under the_ initial position and velocity of .the center of mass of the
Project No. S1-2708. J.A.G. gratefully acknowledges thesohto.n. We .have defined the position of the center of mass of
hospitality of the Low Temperatures Laboratory at the Insti-the kink soliton as
tuto Venezolano de Investigaciones Ciéioais. L.E.G. grate-
fully acknowledges the hospitality of the Nonlinear Dynam- f”z x( ) 2dx
ics Systems Group at the University of Camagu —iz " (A3)

XC m 1/12
APPENDIX f I/2( by)2dx

We have integrated out*like equations using a standard
implicit finite-difference method. In this paper we employed wherel is the length of the system.
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