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The onset of spatiotemporal chaos in a damped sine-Gordon system subjected to a plane wave field as well
as its suppression by an additional small-amplitude plane wave field are proposed theoretically and confirmed
numerically. The relevance of these findings in the context of nonlinear magnetization waves is discussed.
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In the last decade, the problem of suppressing or enhanc-
ing spatiotemporal chaos has been the center of a great deal
of attention and effort on the part of the scientific commu-
nity, partly because of its many and diverse applications,
including the stabilization of semiconductor laser arrays �1�,
superconducting Josephson-junction arrays �2�, and periodic
patterns in optical turbulence �3�, and partly because it may
be regarded as a first step toward the control of turbulence
�4�. It seems especially interesting to consider this problem
in the context of sine-Gordon �SG� systems �5� given the
broad applicability of the SG equation, which describes
propagation of magnetic flux in Josephson junctions �2�,
flux-line unlocking in type-II superconductors �6�, propaga-
tion of ultrashort optical pulses in resonant laser media �7�,
motion of dislocations in crystals �8�, and DNA dynamics
�9�, to cite just a few phenomena. With respect to previous
work, suppression of temporal phase-locked chaos in a
damped SG system in the presence of two ac �sinusoidal in
time, homogeneous in space� excitations was demonstrated
by numerical simulations in Ref. �10�. The present work con-
siders a damped SG system subjected to two spatiotemporal
fields in the form of monochromatic waves:

Utt − Uxx + sin U = − �Ut + � sin��t − knx�

+ �� sin��t − kn�x − �� , �1�

where the amplitudes � , ��, wave numbers kn
�2�n /L , kn��2�n� /L, and frequencies � , � correspond
to the chaos-inducing and chaos-suppressing fields, respec-
tively, � is the initial phase, L is the total length of the
system, and one assumes weak dissipation �0���1� and
small amplitudes �0�� ,��1�. Physically, Eq. �1� de-
scribes, for example, the dynamics of the orientation angle
U�x , t� of the magnetization vector lying in the easy plane of
a quasi-one-dimensional easy-plane ferromagnet in the pres-
ence of a strong constant magnetic field H �lying in the easy
plane� and two additional weak variable magnetic fields in
the form of monochromatic waves, both being perpendicular
to H �11–13�. In the absence of any chaos-suppressing field
��=0� and for exp�iU�x , t��=exp�iU�x+L , t��, U�x , t=0�
=Ut�x , t=0�=0, two different regimes characterized by the
conditions kn�� and kn	�, respectively, have been identi-
fied �14�. In this case, since periodic wave trains locked to

the wave field � sin��t−knx� are observed numerically in
both regimes �for certain ranges of the parameters�, it is natu-
ral to consider an ansatz of the form U��t−knx� for the so-
lutions of the complete SG equation �1� to study the effec-
tiveness of the secondary wave field in suppressing the
spatiotemporal chaos induced by the primary wave field.
This is the well-known method of phase plane analysis �15�,
which is a general method for seeking traveling-wave solu-
tions �see Ref. �15� and references therein for more details�.
Thus, with the additional imposition that the two waves have
the same phase velocity, Eq. �1� reduces to the perturbed
pendulum equations

u

 + sin u = �1�u
 + � sin�W1
� + �� sin�W1�
 + �� , �2�

for kn	�, where u�U−�, W1
2�kn

2−�2�kn
2�1−v f

2�, 

���t−knx−�� /W1, W1���W1 /�, �1���� /W1, and

u�� + sin u = − �2�u� − �sin �W2�� − ��sin �W2�� + �� ,

�3�

for kn��, where W2
2��2−kn

2�kn
2�v f

2−1�, ����t−knx
−�� /W2, W2���W2 /�, �2���� /W2, and where �
���� /�−1�−�, v f �� /kn=� /kn� are the common initial
phase and phase velocity, respectively. When the absolute
value of the phase velocity is sufficiently greater than unity,
one sees that both equations satisfy the requirements of
Melnikov’s method �MM�, i.e., 0��1,2� �1 �16,17�. One can
therefore apply this method to obtain analytical estimates of
the ranges of the parameters �� ,� ,kn� ,�� for inhibition of
the spatiotemporal chaos existing in the absence of the
chaos-suppressing field. In particular, the application of MM
to Eqs. �2� and �3� yields their respective Melnikov functions
�MFs�

M�
0� = D1  A1 sin�W1
0�  B1 sin�W1�
0 + �� , �4a�

M��0� = − D2 � A2 sin�W2�0� � B2 sin�W2��0 + �� ,

�4b�

where D1,2�8�1,2� , A1,2�2�� sech��W1,2 /2�, B1,2
�2��� sech���W1,2 / �2���, and where the plus �minus�
sign of the MFs refers to the upper �lower� homoclinic orbit
of the unperturbed pendulum. We assume in the following
that, in the absence of any chaos-suppressing field ��=0�,
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the above perturbed pendulums exhibit homoclinic chaos
which corresponds to spatiotemporal chaos existing in the
SG system �1�. The theoretical results on chaos suppression
by weak periodic perturbations �18� now directly apply to the
above MFs, and one straightforwardly obtains the three fol-
lowing predictions.

�i� Let �= p�, where p is a positive integer, be such that
�=�opt

+ =�opt
+ �� ,3� /2,0 ,� /2, for p=4n−3,4n−2,4n

−1,4n �n=1,2 , . . .�, respectively. Then M+�
0� and M+��0�
always have the same sign �i.e., homoclinic chaos is sup-
pressed� if and only if the following condition is satisfied:

�min � � � �max, �5a�

�min � �1 − D1,2/A1,2�R1,2, �5b�

�max � R1,2/p2, �5c�

R1,2 � cosh��pW1,2/2�/cosh��W1,2/2� . �5d�

�ii� Let �= p�, where p is a positive integer, be such that
�=�opt

− =�opt
− �� ,� /2,0 ,3� /2, for p=4n−3,4n−2,4n

−1,4n �n=1,2 , . . .�, respectively. Then M−�
0� and M−��0�
always have the same sign �i.e., homoclinic chaos is sup-
pressed� if and only if Eqs. �5a�–�5d� are satisfied �cf. Eqs.
�4a� and �4b��.

�iii� For the main resonance case, �=�, the MFs M�
0�
and M��0� always have the same sign �i.e., homoclinic
chaos is suppressed� inside the regions of the �-� parameter
plane limited by the boundary functions

� = − cos �  �cos2 � − �1 − D1,2
2 /A1,2

2 � . �6�

We found that numerical experiments accurately con-
firmed the theoretical predictions. Figures 1 and 2 show two
illustrative examples. Typically, one finds that complete
regularization appears inside islands which symmetrically
contain the theoretically predicted areas where even chaotic
transients are suppressed �see Fig. 2�.

Two remarks are now in order. First, in the absence of any
chaos-suppressing field ��=0�, the perturbed pendulums �2�
and �3� can exhibit homoclinic chaos if

�

�
� F1

th �7a�

and

�

�
� F2

th, �7b�

respectively, where the chaotic threshold functions are given
by

F1
th �

4v f

�
�1 − v f

2�−1/2 cosh��kn

2
�1 − v f

2� , �8a�

F2
th �

4v f

�
�v f

2 − 1�−1/2 cosh��kn

2
�v f

2 − 1� . �8b�

One straightforwardly obtains the limit limvf→1Fi
th=� , i

=1,2, i.e., in such a limit chaotic behavior is not possible.
Also, for the limiting case of a purely temporal forcing, kn
=0, one has limvf→�F2

th=4 cosh��� /2� /��F2
th���, which is

a monotonically increasing function of the driving frequency.
Second, for each homoclinic orbit of the integrable pendu-
lum, the optimal values for suppression, �opt �and �opt�, are
the same for both regimes �i.e., v f 	1 and v f �1�, for each
resonance order p.

To obtain additional insight into the onset of spatiotempo-
ral chaos, consider the limiting case of a time-independent
perturbation:

Utt − Uxx + sin U = − �Ut + F�x� , �9�

where F�x� is a periodic function having alternating maxima,
zeros, and minima. It has been shown that the zeros of F�x�
are possible candidate equilibrium positions for kinks and
antikinks, which could appear as a result of the dynamics
described by Eq. �9�. One has that the zeros x� �F�x��=0�
with ��F /�x�x=x� 	0 are stable �unstable� equilibria for kinks
�antikinks�, and vice versa for the zeros satisfying
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FIG. 1. Solution profiles for increasing time instants from t=0
�a�,�e� in the absence �presence� of a chaos-suppressing field �=0
�a�–�d� ��=0.5,�=−�, �e�–�h��. Fixed parameters L=104 , �
=0.1, �=0.922, kn=0.001, �=�=0.6.
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FIG. 2. Regularization region in the �-� parameter plane for an
initial situation of spatiotemporal chaos �Eq. �1��. The solid black
contour indicates the predicted boundary function �cf. Eq. �6��,
while the triangle contour corresponds to the numerically obtained
regularization region. Here �=0.9, and the remaining parameters
are as in Fig. 1. Only results corresponding to the interval
�� �� ,2�� are shown because of symmetry.
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��F /�x�x=x� �0 �19,20�. To be specific, let us choose

F�x� �
2�B2 − 1�sinh�Bx�

cosh2�Bx�
, �10�

which has a unique zero at x�=0. Stability analysis of the
kink located at the equilibrium point leads to the following
eigenvalue problem:

L� f�x� = �f�x� , �11�

where L� �−�xx+cos �k�x�, ��−��2+���, and �k
�4 arctan�exp�Bx�� while f�x� are the soliton modes de-
scribing small oscillations around the kink of the form
f�x�exp��t�. We found that the eigenvalues of the discrete
spectrum are given by

�n = B2�� + 2�n − n2� − 1, �12�

with ���+1�=2 /B2. One has that the amplitude of the per-
turbation can be increased by decreasing B, while the inter-
nal mode of the kink is unstable when B2� �13−3�17� /8.
This means that kinks can break up if they are close to an
unstable equilibrium and the force’s amplitude is sufficiently
large. Also, the asymptotic behavior will be a stationary
�time-independent� solution when the external force is purely
spatial. However, the kink�s� will be subjected regularly to
the presence of unstable equilibria in the case of a plane
wave field �cf. Eq. �1��. Note that approximating the extreme
of the sinusoidal wave field profile with the function of Eq.
�10� implies the conditions �	1− �13−3�17� /8 and kn

���13−3�17� /8.
Extensive numerical experiments indicated that, if condi-

tion �7a� and �7b� is conjointly satisfied with the condition
for the instability of the internal mode, turbulent behavior is
typically observed, meaning that the solution is chaotic in
both time and space, as in the example shown in Figs.
1�a�–1�d�. When the dynamics is controlled by the secondary
wave field ��	0�, the solution is usually a periodic wave
which moves at the same velocity as the driving field �see
Fig. 1�e�–1�h��. For �=0, Fig. 3 shows that the spatiotempo-
ral dynamics tends to a stationary structure. This structure is

an attractor of the SG system which plays a role similar to
that of a fixed point in a purely temporal system. Since in the
present case the system is spatiotemporal, such an attractor
can be space dependent. Another important regime occurs
when the equilibria of the “moving” periodic potential are
such that the internal modes are stable. In such a case, a kink
will be transported by the wave with its center of mass sitting
at the bottom of one of the stable equilibria �see Fig. 4�. The
transport of kinks by an external wave field has recently been
considered in Ref. �20�. However, if the velocity of the ex-
ternal wave field is sufficiently large, the kink cannot be
carried by the field. An estimate for when this would first
occur is

�

kn
	

�

�
, �13�

which can be understood as follows. When the spatial peri-
odic force F�x� in Eq. �9� presents a single sign, the stable
kinks and antikinks will move with a velocity that is propor-
tional to its amplitude �say �� and inversely proportional to
the damping coefficient � �cf. Refs. �20,21��, while the di-
rection of the motion will depend on the force’s sign. For the
SG system subjected to a dc force � �22�, one has the fol-
lowing formula for the kink velocity:

Vkink =
��

4�
	1 + ���

4�
�2
−1/2

. �14�

However, when the external perturbation is a plane wave
�i.e., a moving periodic force that periodically changes its
sign� with a phase velocity �� /kn�	Vkink, the kinks and an-
tikinks cannot be stably carried by the plane wave field �20�.
The connection of these results with those from MM may be
clarified by the following considerations. First, note that con-
dition �7a� and �7b� can be satisfied in the limiting case �
→0. Second, we found numerically that there is no chaos in
this case �see Fig. 3�. In fact, chaos does not appear even for
��0, but one typically observes again a wave solution
locked to the external periodic field, both moving with the
same velocity. We thus conclude that there must be a thresh-
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FIG. 3. Solution profiles for increasing time instants from t=0
�a� for �=�=0, and the remaining parameters as in Fig. 1. Notice
that the asymptotic spatial structure is a �time-independent�
attractor.
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FIG. 4. Soliton profiles for different time instants �cf. Eq. �1�;
L=100, �=0.1, �=0.1, kn=0.2, �=0.1, �=0�, showing that
when the internal modes are stable and the phase velocity of the
external field is below a certain threshold value, the kink can be
transported by the external field.
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old value for the phase velocity for spatiotemporal chaos to
be observed, i.e., one needs conditions �7a�, �7b�, and �13�
together with the instability of the internal modes.

In conclusion, we have shown that spatiotemporal chaos
of a SG system perturbed by a wave field is a very complex
phenomenon. Its description cannot be completely reduced
to an effective pendulum equation. One needs more than
temporal-chaos-related concepts. We found that a combina-
tion of concepts including homoclinic bifurcations and the
stability theory of soliton modes �as well as the possibility of
transport of spatiotemporal structures by the moving effec-
tive potential created by the external wave field� allowed us
to characterize this phenomenon. Additionally, we found that
the theory of chaos suppression by an additional periodic
perturbation can also be successfully applied to the case of
developing turbulence, reflecting the importance of underly-

ing homoclinic events. We expect that the present approach
can be useful to control the chaotic dynamics of nonlinear
magnetization waves, including magnetic solitons �23�. In
particular, the present results can be extended to the case of
an arbitrary angle � between the strong constant magnetic
field H �lying in the easy plane� and the two additional weak
variable magnetic fields in the form of monochromatic
waves �11–13�. Our current work is aimed at exploring this
case.
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