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Turbulence in Josephson junctions
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We show that a solid-state device, the long Josephson junction, behaves very much like other tur-
bulent systems exhibiting regimes of weak and hard turbulence. Because of the discrete nature of
our simulations, we conclude that while a large number of active degrees of freedom are necessary
for the existence of turbulence, their number can indeed be small. We show that the transition to
the turbulent state is intimately related to the spatiotemporal symmetry breaking and to the ex-
istence and breakdown of spontaneous pattern formation in the system.

The remarkable interest in chaotic phenomena in
dynamical systems during the last decade arose in part by
the tantalizing perspective that turbulent systems could
be understood within the framework of temporal chaos in
low-dimensional systems.! While it is true that most hy-
drodynamical turbulent systems such as Rayleigh-Bénard
convection exhibit most of the characteristic routes to
chaos associated with low-dimensional systems,’ it has
also become quite clear that as such systems are driven
harder; this simple characterization is no longer valid.
The question is then how to characterize the various re-
gimes in the system as the “turbulent” behavior departs
from the better understood ‘“‘chaotic’ behavior, as well as
establishing what determines the ability of a system to be-
come turbulent. While such a characterization does not
exist, it seems evident that a temporal description will not
suffice and that spatial effects in systems with a large
number of degrees of freedom need a description of its
own.

While it is commonplace to talk about turbulence only
in systems with a large number of degrees of freedom,
systems with a small (but not necessarily low) number of
degrees of freedom can also exhibit a variety of interest-
ing spatiotemporal effects such as spontaneous pattern
formation and temporal chaotic behavior. The question
then arises about whether systems with a small number of
degrees of freedom may also exhibit behavior which can
be characterized more appropriately as turbulent, how
this transition takes place, and how it may be character-
ized. In this paper, we suggest that driven, long Joseph-
son junctions (LJJ) in fact behave very much like tur-
bulent systems as characterized by the absence of spatial
correlation for a wide range of frequencies. Furthermore,
we show that the system approaches this turbulent state
through a well-defined transition beyond the temporal
chaotic state which is intimately related to the existence
and breakdown of spontaneous pattern formation in the
system. These dynamics seem more like chaotic behavior
associated with space rather than time. Due to the
discrete nature of our simulations, we conclude that
while a large number of active degrees of freedom are
necessary for the existence of turbulence in a system, the
number can indeed be small. In fact, our system is iso-
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morphic to a chain of 128 coupled damped pendula. This
analogy indicates that such turbulent behavior is indeed
ubiquitous in nature as it can be present not only in fluids
but also in solid-state and mechanical systems.

The forced, long Josephson junction is described ap-
proximately by a sine-Gordon-like equation given by
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where ¢ =¢(x,?) is the phase difference of the supercon-
ducting order parameter between each side of the barrier
and B, is the Stewart-McCumber parameter (a measure
of the damping of the system); the distance is normalized
to the Josephson penetration depth A, time is normal-
ized to the inverse of the Josephson plasma frequency,
the rf amplitude p is normalized to the critical current I,
and Q, is the normalized applied frequency. The exter-
nal applied field is taken into account through

36(0,1)/3x =d¢(L,1)/3x =1 ,

where L is the junction length and 7 is a measure of the
external magnetic field. In contrast with previous ap-
proaches>* in which finite boundary conditions introduce
a spatial symmetry breaking that induces the pattern for-
mation, in this paper, unless otherwise stated, we employ
open boundary conditions %=0 and initially
¢(x,0)=0¢(x,0)/3t =0 so that the pattern formation
and convertion phenomena we observe can be regarded
as fully spontaneous. In addition we use L =5A; or
10A;, B.=15.744, and Q,=0.65 which are realistic pa-
rameters.

Consider first a junction with L =5A;. At low rf
drives (p < 1.75), such a junction behaves very much like
a Josephson junction without spatial extent in that the
chaotic regime is reached through the usual bifurcation
route with all solutions being spatially homogeneous. In
contrast to this low-amplitude regime, a further increase
of the bias amplitude introduces collective effects which
lead to pattern formation, turbulence, and novel spa-
tiotemporal phenomena.

When the rf drive is increased beyond p=2.5 the sys-
tem goes into an intermittent state between two period 1
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states and chaos as shown in Fig. 1(a), where we show a
local stroboscopic plot of the voltage at each period of
the rf drive; while this intermittency is reminiscent of the
noise-induced hopping that has been observed in simula-
tions of small junctions,® this is in fact much different
since instead of being related to jumps between unstable
attractors in phase space it is due to the inability of the
system to sustain a steady-state spatial pattern of the
breather type. This can be demonstrated by looking, for
example, at Fig. 1(b) where the phase difference between

-
c
S
1.5 T . T v
T T ('b)
0.5} . cooenE MR
- i [ A C g
< 4 o DO N L0 A
-0.5} o : Sl
_|5 e 1 1 s 1 o 1
500 1500 2500
nT

1

36- , s i

— T
Iy

Ty ‘ . ) Tt ]
| 64 128
X

FIG. 1. (a) Strobed time series ¢,(nT) vs nT at the center of
the junction showing intermittency; (b) Difference of the phase
between two points of the barrier A¢(nT) vs nT revealing loss
and recovery of the homogeneous character of the solution; (c)
Strobed profile ¢,(x,nT) vs x —breather decay into a spatially
homogeneous state.
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two different points of the junction is illustrated. Each of
the intermittentlike jumps in Fig. 1(a) is associated with a
sudden loss of phase coherence across the junction. Fig-
ure l(c) demonstrates this behavior where one sees that
during part of the cycle the system forms a breather but
is unable to sustain it. After this breakup of phase coher-
ence the system might still be in the chaotic state but the
spatial pattern remains homogeneous in phase space
where it stays for what can be considerably long periods
of time. Each time the system attempts to form a breath-
er, however, it collapses breaking phase coherence. Thus,
it is the spatial variable which is responsible for the novel
behavior, as it is the tendency of the system to spontane-
ously form a spatial pattern that leads to what can be
considered, in some sense, to be a spatial intermittency
without the spatial symmetry of the system being broken.

If the junction is somewhat larger the interaction be-
tween the degrees of freedom is decreased (in the analogy
of coupled pendula of Eq. (1) we are decreasing the cou-
pling between the pendula). This favors the spontaneous
symmetry breaking of the system, both in space and in
time. For a LJJ with L =10A; and p=2 we find a rich
transition from a transient with period 1 to a period 2 re-
gime which at first sight might appear to be a simple bi-
furcation in time as in low-dimensional dynamical sys-
tems. However, as shown in Fig. 2(a) where we plot the
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FIG. 2. Spontaneous symmetry breaking. (a) Difference of
the phase between two points of the barrier A¢(nT) vs nT. (b)
Strobed profile ¢,(x,nT) vs x showing nonsymmetric breather
oscillation.
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phase difference A¢ between the two points of the junc-
tion for each period of the rf drive as a function of time,
the voltage is no longer homogeneous in space. The fact
that A¢ repeats only every second period shows that the
spatial extent of the junction has now become significant.
Figure 2(b) indicate that the breather present at lower
drives is no longer stable but instead a “virtual” breather
centered at the edge of the junction is formed with only
half of it present inside the junction. This ‘“‘virtual”
breather switches at each period between its two states,
thus yielding a steady state in which the spatial symmetry
is broken, muck like the symmetry-breaking precursor (in
phase space) of the usual transition to chaos. Figure 2(b)
can be interpreted to be the inability of the system to sus-
tain a soliton commensurate with its size jumping instead
into a sort of bifurcation in space. The system thus
succeeds in breaking the symmetry in real space and not
in phase space as in temporal chaos.

Up to now in this paper we have described novel dy-
namics which the LJJ exhibited which are associated
with the competition and switching between collective
dynamics and low-dimensional or single-particle dynam-
ics. In what follows we show a transition which can be
characterized as spatiotemporal disorder.

Previous results*® have shown that sine-Gordon-like
systems, and in particular the LJJ, exhibit a transition to
chaos associated with the spatial extent of the junction
which is in some sense similar to chaotic dynamics in
low-dimensional dynamical systems. The LJJ can also
present transitions to chaos in the usual temporal sense:
indeed, we found strange attractors corresponding to
homogeneous regimes. In both cases the system reaches
a chaotic state which can be rather well characterized by
a self-similar strange attractor with a well-defined fractal
dimension.

For the same junction length used previously
(L =10A;) the system goes into a disordered state in
which the attractor completely loses its fractality and au-
tosimilarity. An example of this is shown in Fig. 3(a)
where we present the Poincaré map for a low enough
number of periods to show the dense formation of this
disordered state (p=2.5). The corresponding return map
for each period of the rf drive for the same parameters
exhibits a complete absence of structure. These plots re-
veal that low-dimensional strange attractors are des-
troyed due to an activation of an increased number of
effective degrees of freedom. This solution is inhomo-
geneous in space and also exhibits symmetry breaking;
solutions are no longer coherent in space and the ex-
change of energy between the degrees of freedom is disor-
dered. This disordered state is clearly quite different
from that of low-dimensional chaos; the question arises as
to how can one characterize it and whether it bears any
relationship to the turbulent behavior seen in fluid sys-
tems. We find that the fractal measure of the Poincaré
map for this attractor for the whole junction or for a sin-
gle point of the junction tends to the Euclidean value.
We have chosen to study this behavior in the context of
the soft and hard turbulent states identified by Heslot
et al. in Rayleigh-Bénard convection.

In order to further characterize any disordered state in
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a spatiotemporal system one has to resort to studying
possible correlations in space for various frequencies
which can be done through the study of its coherence.
The coherence is defined as

C,, (k) Ok
* G (k)G (k) ’

(2)

where G,, and G, are the autopower spectra of the two
real sequences and G,, is the cross-power spectrum. The
absence of coherence at any frequency shows that there
are no correlations between the temporal dynamics at
two points of the system. In fact, the absence of these
correlations indicates that the construction of higher-
dimensional phase spaces using more of the spatial points
of the junctions results in little information of value.
Figure 3(b) shows the calculation of the coherence for
the dynamical state of Fig. 3(a). The coherence between
two points (the middle and an extreme of the LJJ) disap-
pears for all values but those of very low frequencies and
the driving frequency. This is quite similar to the results
of Heslot, Castaing, and Libchaber for Rayleigh-Bénard
convection,’ who named this regime the soft-turbulence
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FIG. 3. Destruction of the strange attractor. (a) Poincaré
map [mod(2m)]—attractor loses fractality; (b) Coherence re-
vealing the soft-turbulencelike regime.
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regime—a regime disordered both in space and in time.
Our results show that the soft-turbulence regime might
be quite generic of the transition to turbulence in various
regimes and that this transition might not be limited to
systems with a large number of degrees of freedom. Note
that the two systems differ not only in their number of
degrees of freedom, but also in the Rayleigh-Bénard sys-
tem, symmetry breaking is induced via boundary condi-
tions which induces oscillations while the LJJ is driven
by an oscillation. In addition, our results were obtained
in the absence of thermal noise which is unavoidable in
experiments. In this sense it is clear that these turbulent
states can be regarded as being deterministic in origin.

One of the limitations of solving Eq. (1) is that it is
difficult to explore solutions in parameter space in detail
due to the long computational times. While we have not
found a hard-turbulence regime near that of the soft-
turbulence regime described previously, we have been
able to find a hard-turbulence regime analogous to the
one described by Heslot et al.® for the Rayleigh-Bénard
system, but for a junction with L =5A; and p=0.7375
and with a magnetic field present (n=1.25). In this re-
gime the pattern formation and conversion* induces a
reemergence of coherence, but only in a narrow frequen-
cy range in the form of a peak at a certain frequency as
shown in Fig. 4. (There is also a peak at the driving fre-
quency, absent in Rayleigh-Bénard convection since there
is no oscillating driving force.) This indicates that the
system dynamics are only correlated in space at a single
frequency. Thus, the behavior of the LJJ can be con-
sidered to be turbulent in the same sense as it has been
possible to characterize the transition to turbulence in
fluid systems through the identification of soft- and
hard-turbulence regimes above the chaotic transition.
This represents a strong suggestion of universality in the
transition turbulence.

One can look further into the nature of this transition
by looking at the histogram of fluctuations in both re-
gimes as described by Helsot et al.® Our simulations also
show differences between soft and hard turbulence. How-
ever, they are also different from those reported by Hel-
sot et al.” suggesting that this might not provide a clear-
cut distinction between these two regimes.

Our simulations have shown that the dynamics of the
LJJ can be considered to be turbulent suggesting that the
description of the transition from chaos to turbulence via
two different turbulent regimes is generic to systems with
a wide range in the number of degrees of freedom. While
it might be feasible to perform experiments with LJJ’s by
placing contacts over various places of the junction and
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FIG. 4. Chaotic pattern formation and conversion. Coher-
ence reveals a hard-turbulencelike regime.

measuring correlation in time and space, the high fre-
quency oscillations of the LJJ present a limit to distin-
guishing the difference between the soft- and hard-
turbulence regime since only low-frequency behavior well
below the driving frequency can be measured.” This sug-
gests that it might be more interesting to look for similar
behavior in solid-state systems where such a difference
can be distinguished such as solids exhibiting charge-
density waves or even two-dimensional arrays of Joseph-
son junctions drivein at low frequencies.

In conclusion we have shown that LJJ exhibits unique
and novel dynamics associated to spatiotemporal behav-
ior and to symmetry breaking both in phase and real
spaces. In addition, we have shown that in such a system
the transition from periodic to chaotic and to turbulent
dynamics appears to be quite general in nature, exhibiting
two separate regimes of soft and hard turbulence as
characterized by their spatial coherence. Other charac-
terizations of these complex spatiotemporal regimes in
dynamical systems might provide a universal common
picture for the transition to turbulence in a wide variety
of systems.
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