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1. INTRODUCTION

This chapter is concerned with the turbulent behavior, an interesting and
fundamental dynamical state not well understood. Once it had been established
that chaos is not turbulence, the turbulent phenomenon has received a great deal
of attention in recent yearsl-0,

Systems with many degrees of freedom can develop coherent structures
(spatiotemporal patterns). In this way the system reduces the effective number of
degrees of freedom and is able to exhibit periodic and low-dimensional chaotic (in
time) behavior. The activation of new degrees of freedom can give rise to
turbulent-like dynamics (incoherent in space and disordered in space as well as in
time).

In Fig.1 we present the contrast between these different dynamics: Fig. 1(a)
shows a typical low-dimensional Poincaré map for a chaotic dynamic, whereas Fig.
1(b) corresponds to fully developed spatiotemporal, turbulence in which the
attractor completely loses fractality and autosimilarity (intimately related with the
underlying mechanism of the chaotic phenomena). The low-dimensional strange
attractor is destroyed due an activation of an increased number of effective
degrees of freedom. Actually the notion that an attractor underlies turbulent
behavior is under suspect: according to Crutchfield and KanekoZ, long transients
preclude observation of the behavior ruled by the asymptotic invariant measure
and the nature of the attractor is irrelevant to the observed behavior.

In 1987, Heslot, Castaing and Libchaber! reported a Rayleigh-Bénard
experiment which followed the transition fron chaos to soft and hard turbulence.
The soft turbulence regime can be regarded as a dynamical state globally
disordered in space and in time. This state contrasts with the hard turbulence
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Fig. 1. From chaos to disorder. (a) Poincaré map showing a
typical strange attractor for low-dimensional chaos. (b)
The strange attractor is destroyed as spatial correlation
decays.




regime in which the pattern formation and conversion induces a reemergence of
coherence in a narrow frequency range.

The solitonlike character of the the long Josephson junction can play a
fundamental role as an activating mechanism of chaos and introduces a rich
variety of new and interesting spatiotemporal phenomena7a8. Even richer behavior
can also be exhibited by the the long Josephson junction, like regimes of soft and
hard turbulencef. The aim of this chapter is to present the study of turbulent
regimes in long Josephson junctions as a field which provides an insight of what
determines the ability of a system to become turbulent.

This chapter is organized as follows: in Sec. 2 we present a description of the
forced long Josephson junction. In Sec. 3 we explore the transition to the soft
turbulent state. In Sec. 4 we contrast the soft and the hard turbulence regimes.
Finally, in Sec. 5 we summarize and present our conclusions.

2. THE LONG JOSEPHSON JUNCTION

The forced long Josephson junction considered by us has been discussed
extensivelyg. We model this system with the usual sine-Gordon-like equation,

¢xx-¢“’—sin¢=a¢,-—psin(ﬂdt) (1)

where ¢ =¢(x,t) is the phase difference of the superconducting order parameter
between each side of the barrier and its derivative in time is the voltage across
the junction. The term a¢, represents quasiparticle loss. The distance is
normalized to the Josephson penetration depth A, , time is normalized to the
inverse of the Josephson plasma frequency, the rf amplitude p is normalized to the
critical current and Qg is the normalized applied frequency. The external applied
field is taken into account through,

¢,.(0.)=0,(L,t)=n (2)

where L is the junction length and n is a measure of the external magnetic field.

7
The perturbed sine-Gordon equation is the simplest wave-equation for a

periodic medium and occurs frequently in solid-state physics. The system described
by egs.(1,2) is in fact analogous to a chain of coupled pendula forced by an
external torque. This analogy indicates that the turbulent behavior can be present
not only in fluids but also in solid-state and mechanical systems described by

relatively simple models.

3. ONSET OF SOFT TURBULENCE

The study of the route to turbulent-like behavior can establish what
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determines the ability of the system to become turbulent, providing in this fashion
a better understanding of the turbulent state.

In this section we explore the onset of soft turbulence in long Josephson
junction as the amplitude of a radio-frequency (rf) drive is increased. Parameter
values are L=10A,; , «=0.252 and Q,=0.65. We employ open boundary
conditions, 11=0.0 , spatially uniform drive and flat initial conditions. Thus the
pattern formation phenomena is fully spontaneous in contrast with
Rayleigh-Bénard experiments in which symmetry breaking and consequent pattern
formation is induced via boundary conditions. In addition, our results were
obtained in the absence of thermal noise.

31 S p i : S Breaki

In most physical situations the development of turbulence is preceded by the
formation of spatiotemporal structures. Hereafter we show that in the case of the
long Josephson junction the pattern formation phenomenon can be autonomously
excited.

For a long Josephson junction with p =2 we find a transition from a transient
with period 1 to a period 2 regime, This transition at first sight might appear to
be a simple bifurcation in time as in low-dimensional systems. However, as shown
in Fig. 2(a) (where we plot the phase difference A¢ between two points of the
junction for each period of the rf drive as a function of time) the voltage is no
longer homogeneous in space. The fact that A¢ repeats only every second period
shows that the spatial extent of the junction has now become significant. Figure
2(b) reveals the spatiotemporal profile sustained by the system after the
homogeneous transient: a "virtual" breather (a solitonlike state with an internal
degree of freedom) centered at the edge of the junction is formed with only half
of it present inside the junction. This "virtual" breather switches at each period
between its two states, thus yielding a steady state in which the spatial symmetry
is broken, much like the symmetry-breaking precursor (in phase space) of the
usual transition to chaos. Fig. 2(b) can be interpreted to be the inability of the
system to sustain a soliton commensurate with its size, jumping instead into a sort
of bifurcation in space. The system thus succeeds in breaking the symmetry in real

space and not in phase space as in temporal chaos.
7

3.2 The Two-Frequency Route to Turbulence

Below we present the development of turbulence as concerning the
involvement of new degrees of freedom via the breakdown of coherence of the
spatiotemporal profile.

As p is increased, once the breather forms from the initial flat condition
there is long transient both in space and in time: there is an increasing difficulty
of the system to attain a response which oscillates locked to the frequency of the
driving force. The inner bands in Fig. 3 corresponds to a regime (p =2.007"9)
that after such a long transient finally reaches the state with a breather oscillating
with a frequency equal to half the driver (Fig. 2(b)).
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Fig. 2. Spontaneous Symmetry Breaking. (a) The difference of the
phase between two points of the junction ApvsnT (T is
the period of the harmonic drive). For n > 180, A¢
oscillates between the upper and lower curves revealing
the development of a spatiotemporal profile. (b) Strobed
profile ¢,(x,nT)vsx showing nonsymmetric breather
oscillation.
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As the system is driven harder the system ceases the long transient behavior
in space and in time via generation of a quasiperiodic response. This quasiperiodic
regime is possible because the spatiotemporal excitation oscillates at a frequency
inconmensurate with the external drive. The outer bands in Fig. 3 presents for
p=2.01 the generation at the very onset of pattern formation of a breather-like
excitation unlocked to the frequency of the driving force.

The coherence of the spatial profile decreases as the forcing is increased
further as we present in Fig. 4(a). Thus the final state is disordered not only in
time but in space and can be regarded as a soft-turbulent like regime, a regime in
which there is a breakdown of the pattern formation ability of the system 1,0,

The underlying mechanism of the transition to the soft turbulent regime is
the followingl0: in the quasiperiodic regime, different points of the junction differ
in the way the different frequencies linearly combine. This has the effect of
reducing the coherence of the spatiotemporal profile which decreases as the
forcing is increased further.
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Fig. 3. Difference of the phase between two points of the
junction A¢(nT)vsnT for a regime with a long transient
in space and time at p=2.0079 (inner bands) and a
quasiperiodic regime at p =2.01 (outer bands).

4. SOFT AND HARD TURBULENCE

An applied magnetic field can excite pattern formation and destruction
phenomena in the long Josephson junction. This system exhibits a hard turbulence
regime when parameter values are L=5A,, a=0.252, Q4=0.65 , p>0.7375
and n=1.25 With these constraints the dynamical behavior corresponds to the
regime of creation and destruction of fluxons8.
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Coherence spectra. (a) Soft turbulence: spatial coherence
dissapears for all values but those of very low frequencies
and the driving frequency. (b) Hard turbulence: spatial
coherence dissapears for all but one frequency (other than
the driving frequency).
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In Fig. 4(b) we present the coherence spectrum for this fluxonic regime;
coherence dissapears for all but one frequency (other than the drive frequency),
This is in contrast with the soft turbulent regime (Fig. 4(a)) in which spatia]

coherence dissapears completely.

The statistics of the voltage recordings are very different in the two types of
turbulent behaviors as is shown by the histograms of fluctuations in both regimes
(Fig.5(a,b)). However, these histograms are also different from those reported for
the Rayleigh-Bénard systemll suggesting that this characterization might not
provide a universal clear-cut distinction between the two regimes.
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Fig. 5(a)- Histogram of voltage fluctuations for soft turbulence. The
continuous line represents the fluctuations for the signal
at x=1/2 whereas the dashed lines corresponds to the

signal at x=L".
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Fig. 5(b). Histogram of voltage fluctuations for hard turbulence. The
continuous line represents the fluctuations for the signal
at x =L/2 whereas the dashed lines corresponds to the

signal at x=L",
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Fig. 6. Hard turbulence and pattern conversion. (a) Poincaré map
¢,(L/2,T)vs¢(L/2,T)(mod2n) for the hard turbulent
regime (p=0.7375). (b) Strobed time series
¢,(L/2,nT)vsnT corresponding to a sudden pattern
conversion after a long transient (p =0.8).

399



At p =0.8 the pattern formation and conversion mechanism underlying the
hard turbulence regime, manifests in a striking way: the fluxonic (traveling-wave)
can give rise to a localized breather-like oscillation locked to the driving
frequencyS. Fig. 6(a) presents the dynamical attractor that is suddently removed
after a long transient as is shown in Fig. 6(b).

5. SUMMARY

Soft turbulent behavior can be autonomously excited in the long Josephson
junction, with a single oscillating drive. The spatiotemporal symmetry breaking, the
spontaneous pattern formation and the ability of the system to sustain an
spatiotemporal profile unlocked to the driving force determines the ability of the
system to achieve the soft-turbulent regime.

In turn, pattern formation and conversion appears as the pervasive feature of
the hard turbulent regime.

The route to soft turbulence begins with a period doubling bifurcation
accompanied with pattern formation. This route differs from Feigenbaum’s period
doubling cascade as the control parameter is varied: the period 2 regime exhibits
a direct transition to a two-frequency quasiperiodic regime and further increase of
the control parameter destroys coherence in space. The knowledge of the
differences between the onset of chaos and the onset of turbulence can provide a
way to distinguish these two regimes in experimental situations.
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