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Abstract

We investigate explicit functions that can produce truly random numbers. We use the analytical properties of the explicit
functions to show that certain class of autonomous dynamical systems can generate random dynamics. This dynamics presents
fundamental differences with the known chaotic systems. We present real physical systems that can produce this kind of random
time-series. We report the results of real experiments with nonlinear circuits containing direct evidence for this new phenom-
enon. In particular, we show that a Josephson junction coupled to a chaotic circuit can generate unpredictable dynamics. Some
applications are discussed. 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Over the last three decades or so, a revolution has
happened in the development of science. We are talk-
ing about Chaos theory [1–10]. In the chaotic regime,
the behavior of a deterministic system appears ran-
dom. This finding has forced many experimentalists
to re-examine their data to determine whether some of
the random behaviors attributed to noise are due to de-
terministic chaos instead.

Chaos theory has been successfully applied to
many scientific and practical situations [1–10].

* Corresponding author.
E-mail address:jorge@pion.ivic.ve (J.A. González).

In the philosophical realm, however, the impor-
tance of this development was that chaos theory
seemed to offer scientists the hope that almost “any”
random behavior observed in nature could be de-
scribed using low-dimensional chaotic systems. Ran-
dom-looking information gathered in the past (and
shelved because it was assumed to be too complicated)
perhaps could now be explained in terms of simple
laws.

The known chaotic systems are not random [11].
If the previous values of a time-series determine the
future values, then even if the dynamical behavior is
chaotic, the future may, to some extent, be predicted
from the behavior of past values that are similar to
those of the present. The so-called “unpredictability”
in the known chaotic systems is the result of the sen-
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sitive dependence on initial conditions. It is not an ab-
solute unpredictability.

Truly random systems are different from the chaotic
ones. Past sequences of values of a random dynam-
ical variable that are similar to present ones tell as
much or little about the next value as about the next
hundredth value. The so-called nonlinear forecasting
methods for distinguishing chaos from random time-
series are based on these ideas [11].

Recently, we have introduced explicit functions
that produce truly random sequences [12–14]. For in-
stance, let us define the function

(1)Xn = sin2(θπzn),
wherez is a real number andθ is a parameter.

For an integerz > 1, this is the solution to some
chaotic maps [12–14] (see Fig. 1(a)). For a noninte-
gerz, function (1) can produce truly unpredictable ran-
dom sequences whose values are independent.

Functions (1) with nonintegerz cannot be ex-
pressed as a map of type

(2)Xn+1 = f (Xn,Xn−1, . . . ,Xn−r+1).

In the present Letter we address the following ques-
tion: can an autonomous dynamical system with sev-
eral variables produce a random dynamics similar to
that of function (1)? We will present several dynami-
cal systems with this kind of behavior. We will report
the results of real experiments with nonlinear circuits,
which contain direct evidence for this new phenom-
enon. We discuss some applications.

Fig. 1. First-return maps produced by function (1): (a)z = 5;
(b) z = 7/3.

2. Random functions

Let us discuss first some properties of function (1).
We will present here a short proof of the fact that
the sequences generated by functions (1) are unpre-
dictable from the previous values. This proof is pre-
sented here for the first time. However, a more detailed
discussion of the properties of these functions (includ-
ing statistical tests) can be found in Refs. [12–14].

Let z be a rational number expressed asz = p/q ,
wherep andq are relative prime numbers.

We are going to show that if we havem+1 numbers
generated by function (1):X0,X1,X2,X3, . . . ,Xm

(m can be as large as we wish), then the next value
Xm+1 is still unpredictable. This is valid for any string
of m+ 1 numbers.

Let us define the following family of sequences:

(3)X(k,m)
n = sin2

[
π

(
θ0 + qmk

)(p

q

)n
]
,

wherek is an integer. The parameterk distinguishes
the different sequences.

For all sequences parametrized byk, the firstm+ 1
values are the same. This is so because

X(k,m)
n = sin2

[
πθ0

(
p

q

)n

+ πkpnq(m−n)

]

(4)= sin2

[
πθ0

(
p

q

)n
]
,

for all n � m. Note that the numberkpnq(m−n) is an
integer forn � m. So we can have infinite sequences
with the same firstm+ 1 values.

Nevertheless, the next value

(5)X
(k,m)
m+1 = sin2

[
πθ0

(
p

q

)m+1

+ πkpm+1

q

]

is uncertain.
In general,X(k,m)

m+1 can takeq different values.

Theseq values can be as different as 0, 1/2,
√

2/2,
1/e, 1/π , or 1. From the observation of the previous
valuesX0,X1,X2,X3, . . . ,Xm, there is no method for
determining the next value.

This result shows that for a given set of initial
conditions, there exists always an infinite number
of values of θ that satisfy those initial conditions.
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The time-series produced for different values ofθ

satisfying the initial conditions is different in most of
the cases. Even if the initial conditions are exactly the
same, the following values are completely different.
This property is, in part, related to the fact that the
equation sin2 θ = α, where 0� α � 1, possesses
infinite solutions forθ .

We should stress that from the observation of a
string of valuesX0,X1,X2,X3, . . . ,Xm generated by
function (1) it is impossible to determine which value
of θ was used.

Figs. 1(a) and (b) show the first-return maps for
z = 5 andz = 7/3.

For z irrational (we exclude the numbers of type
z = m1/k), the numbers generated by function (1) are
completely independent (see Fig. 2(a) that shows the
first-return map forz = e). After any string ofm + 1
numbersX0,X1,X2,X3, . . . ,Xm, the next outcome
Xm+1 can take infinite different values.

The numbers produced by function (1) are ran-
dom but are not distributed uniformly. The prob-
ability density behaves asP(X) ∼ 1/

√
X(1−X).

If we need uniformly distributed random numbers,
we should make the following transformationYn =
(2/π)arcsin

√
Xn. In this caseP(Y ) = const (see

Fig. 2(b)).
It is important to mention here that the argument of

function (1) does not need to be exponential all the
time, for n → ∞. In fact, a set of finite sequences
(where each element-sequence is unpredictable, and
the law for producing a new element-sequence cannot
be obtained from the observations) can form an infinite
unpredictable sequence. See the discussion in the fol-
lowing paragraph.

Fig. 2. First-return maps produced by function (1): (a)z = e (ir-

rational); (b)z = e, Yn = (2/π)arcsin(X1/2
n ).

So if we wish to produce random sequences of very
long length, we can determine a new value of parame-
terθ after a finite numberN of values ofXn. This pro-
cedure can be repeated the desired number of times.
It is important to have a nonperiodic method for gen-
erating the new value ofθ . For example, we can use
the following method in order to change the parame-
terθ after each set ofN sequence values. Let us define
θs =AWs , whereWs is produced by a chaotic map of
the formWs+1 = f (Ws); s is the order number ofθ
in a way thats = 1 corresponds to theθ used for the
first set ofN values ofXn, s = 2 for the second set,
etc. The inequalityA > 1 should hold to ensure the
absolute unpredictability. In this case, from the obser-
vation of the valuesXn, it is impossible to determine
the real value ofθ .

After a careful analysis of functions (1), we arrive
at the preliminary conclusion that (to produce unpre-
dictable dynamics) the main characteristics for any
functions are the following: the function should be
able to be re-written in the form

(6)Xn = h
(
f (n)

)
,

where the argument functionf (n) grows exponen-
tially and the functionh(y) should be finite and peri-
odic. This result allows us to generalize this behavior
to other functions as the following:

(7)Xn = P
(
θzn

)
,

whereP(t) is a periodic function.
However, a more deep analysis shows that (to pro-

duce complex behavior) the functionf (n) does not
have to be exponential all the time, and functionh(y)

does not have to be periodic. In fact, it is sufficient
for function f (n) to be a finite nonperiodic oscillat-
ing function which possesses repeating intervals with
finite exponential behavior. For instance, this can be
a chaotic function. On the other hand, functionh(y)
should be noninvertible. In other words, it should have
different maxima and minima in such a way that equa-
tion h(y) = α (for some specific interval ofα, α1 <

α < α2) possesses several solutions fory.

3. Autonomous dynamical systems

The following autonomous dynamical system can
produce truly random dynamics:
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(8)Xn+1 =
{
aXn, if Xn <Q,

bYn, if Xn >Q,

(9)Yn+1 = cZn,

(10)Zn+1 = sin2(πXn).

Here a > 1 can be an irrational number,b > 1,
c > 1. We can note that for 0<Xn <Q, the behavior
of functionZn is exactly like that of function (1).

For Xn > Q the dynamics is re-injected to the re-
gion 0< Xn < Q with a new initial condition. While
Xn is in the interval 0<Xn <Q, the dynamics ofZn

is unpredictable as it is function (1). Thus, the process
of producing a new initial condition through Eq. (9) is
random.

If the only observable isZn, then it is impossible to
predict the next values of this sequence using only the
knowledge of the past values.

An example of the dynamics produced by the dy-
namical system (8)–(10) is shown in Fig. 3. If we
apply the nonlinear forecasting method analysis to a
common chaotic system, then the prediction error in-
creases with the number of time-steps into the future.
On the other hand, when we apply this method to the
time-series produced by system (8)–(10), the predic-
tion error is independent of the time-steps into the fu-
ture, as in the case of a random sequence. Other very
strong methods [15], which allow to distinguish be-
tween chaos and random noise, produce the same re-
sult.

Here we should make an important remark. Math-
ematical models can be of different types. For in-
stance, natural phenomena can be described by dif-
ferential equations, difference equations, cellular au-
tomata, neural networks, etc.

Fig. 3. First-return maps produced by the dynamics of the dynamical
system (8)–(10). (a)a = 7/3, b = 171, c = 1.5, Q = 1000/a;
(b) a = e (irrational),b = 171,c = 1.5,Q= 1000/a.

Even explicit functions can be mathematical mod-
els. If we consider function (1) as the mathematical
model of some dynamical process, then this process
can be completely random. If all we know is the series
of outcomesX0,X1,X2, . . . , then it does not matter
how many values we already have, the next value is
unpredictable. However, this is because from the ob-
servation of the valuesX0,X1,X2, . . . ,Xm, it is im-
possible to determine the “variable”Yn = θπzn. This
could be considered as a “hidden variable”. Of course,
we cannot say that this is just a problem of hidden vari-
ables, because not for any hidden variableYn, the func-
tion Xn = sin2(Yn) is a random system. Here we have
obtained necessary conditions for this phenomenon to
occur.

Let us extend this analysis to the dynamical system
(8)–(10). In this case the completely random variable
is Zn. The role of “hidden variable” is played byXn.
If one could observe the seriesXn, then the complete
randomness of the data set is lost. We could say that
some projection of the complete set of variables onto
a proper subset is necessary for the effect.

It is important to notice that the dynamical system
(8)–(10) is a well-posed set of difference equations
with unique forward time evolution. Given the initial
conditions (X0, Y0,Z0), the future evolution of the dy-
namics is fully determined. However, if the only ob-
servable isZn, then this variable will behave as a com-
pletely random time-series. How can one reconcile the
unique forward time evolution with this randomness?
The answer is related to the fact that only a subset of
the variables are observed.

With this result we are uncovering a new mecha-
nism for generating random dynamics. This is a fun-
damental result because it is very important to under-
stand different mechanisms by which the natural sys-
tems can produce truly random (not only chaotic) dy-
namics.

4. Pseudorandom number generators

There is a large literature dedicated to pseudoran-
dom number generators (see, e.g., [16–38] and refer-
ences therein). A very fine theory has been developed
in this area and this theory has produced many impor-
tant results.
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However, we should say here that the known pseu-
dorandom number generators are not supposed to
generate truly random numbers.

In his important review article [17], James says:
“Truly random numbers are unpredictable in advance
and must be produced by a random physical process,
such as radioactive decay”.

In fact, pseudorandom numbers are produced using
recurrence relations, and are therefore not truly ran-
dom [17,18,24–26,33].

D’Souza et al. [24] say in their paper: “Pseudoran-
dom number generators are at best a practical substi-
tute, and should be generally tested for the absence of
undesired correlations”.

Many known pseudorandom number generators are
based on maps of type

(11)Xn+1 = f (Xn,Xn−1, . . . ,Xn−r+1).

Now we will present the maps behind some of the
most famous and best pseudorandom number genera-
tors.

Multiplicative linear congruential generators[16,
17] are defined by the following equation:

(12)Xn+1 = (aXn + c)modm.

Some famous values for these parameters are the
following: a = 23, m = 108 + 1, c = 0; a = 65539,
m = 229, c = 0; a = 69069,m = 232, c = 1; a =
16807,m = 231 − 1, c = 0; a = 1664525,m = 232,
c = 0 (this is the best generator form= 232, according
to the criteria of Knuth [20]).

The Fibonacci-like generatorsobey the following
equation:

(13)Xn+1 = (Xn−p 	Xn−q )modm,

where 	 is some binary or logical operation. For
instance,	 can be addition, subtraction or exclusive-
or.

Other extended algorithmsuse equations as the
following:

(14)Xn+1 = (aXn + bXn−1 + c)modm.

Theadd-and-carry generatorsare defined as

(15)Xn+1 = (Xn−r ±Xn−s ± c)modm.

Among the high quality generators investigated in
the famous paper [16] are the following:

(16)Xn+1 = (16807Xn)mod
(
231 − 1

)
,

(17)Xn+1 = (Xn−103.XOR.Xn−250),

(18)Xn+1 = (Xn−1063.XOR.Xn−1279),

where.XOR. is the bitwise exclusive OR operator,

(19)Xn = (Xn−22 −Xn−43 − c),

where for Xn � 0, c = 0, and forXn < 0, Xn =
Xn + (232 − 5), c = 1.

All known generators (in some specific physical
calculations) give rise to incorrect results because they
deviate from randomness [16,24,25].

The problem is that these algorithms are pre-
dictable.

An example of this can be found in the work of
Ferrenberg et al. [16]. They found that high quality
pseudorandom number generators can yield incorrect
answers due to subtle correlations between the gener-
ated numbers.

Suppose we have an ideal generator for truly ran-
dom numbers. In this case, no matter how many num-
bers we have generated, the value of the next number
will be still unknown. That is, there is no way to write
down a formula that will give the value of the next
number in terms of the previous numbers, no matter
how many numbers have been already generated.

The authors of paper [16] related the errors in the
simulations to the dependence in the generated num-
bers. Indeed, they are all based on maps of type (11).

In the present Letter we have shown that both the
sequence of numbersXn defined by function (1) and
the sequence of numbersZn defined by the dynamical
system (8)–(10) cannot be expressed as a map of
type (11). In fact, these numbers are unpredictable and
the next value cannot be determined as a function of
the previous values.

Recently, simulations of different physical systems
have become the “strongest” tests for pseudorandom
number generators. Among these systems are the fol-
lowing: the two-dimensional Ising model [16], ballis-
tic deposition [24], and random walks [25].

Nogués et al. [25] have found that using common
pseudorandom number generators, the produced ran-
dom walks present symmetries, meaning that the gen-
erated numbers are not independent.

On the other hand, the logarithmic plot of the mean
distance versus the number of stepsN is not a straight
line (as expected theoretically) afterN > 105 (in fact,
it is a rapidly decaying function).
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D’Souza et al. [24] use ballistic deposition to test
the randomness of pseudorandom number generators.
They found correlations in the pseudorandom numbers
and strong coupling between the model and the gen-
erators (even generators that pass extensive statistical
tests).

One consequence of the Kardar–Parisi–Zhang the-
ory is that the steady state behavior for the interface
fluctuations (in ballistic deposition in one dimension)
should resemble a random walk. Thus, a random walk
again serves as a good test for pseudorandom numbers.

We have produced random walks using the num-
bers generated by our systems. The produced ran-
dom walks possess the correct properties, including
the mean distance behavior〈d2〉 ∼N .

The present Letter is not about random number
generators. In the present Letter we discuss a new phe-
nomenon: the fact that unperturbed physical systems
can produce truly random dynamics.

Of course, one of the applications of this phenom-
enon is random number generation.

The art of random number generation requires more
than the randomness of the generated numbers. It re-
quires good programming skills and techniques to ob-
tain the desired distributions for the numbers.

The functions and systems described in this Letter
can be used to create very good random number gener-
ators. Algorithms designed for this purpose along with
the statistical tests will be published elsewhere.

In this section we only wished to present a theo-
retical comparison between the sequences produced
by the pseudorandom-number-generator algorithms
(11)–(19) and the systems described in the present Let-
ter.

5. Experiments

When the input is a normal chaotic signal and the
system is an electronic circuit with theI–V character-
istics shown in Figs. 4 and 5, then the output will be a
very complex signal.

In Ref. [39] a theory of nonlinear circuits is pre-
sented. There we can find different methods to con-
struct circuits with theseI–V characteristic curves.

The scheme of this composed system is shown in
Fig. 6. A set of equations describing this dynamical
system is the following:

Fig. 4. NoninvertibleI–V characteristic. Two extrema.

Fig. 5. NoninvertibleI–V characteristic. Many extrema.

Fig. 6. Scheme of a nonlinear system where a chaotic voltage source
is used as the input signal for a nonlinear circuit with a noninvertible
I–V characteristic.

(20)Xn+1 = F1(Xn,Yn),

(21)Yn+1 = F2(Xn,Yn),

(22)Zn+1 = g(Xn),

where Eqs. (20) and (21) describe a normal chaotic
dynamics where the variableXn presents intermittent
intervals with a truncated exponential behavior and
g(Xn) is a function with several maxima and minima
as that shown in Fig. 5.

Figs. 7(a) and (b) show nonlinear circuits that can
be used as the nonlinear system shown on the right of
the scheme of Fig. 6.

The system on the left of the scheme can be a cha-
otic circuit, e.g., the Chua’s circuit [40].

We have constructed a circuit similar to the one
shown in Fig. 7(a). We produced chaotic time-series
using a common nonlinear map and then we trans-
formed them into analog signals using a converter.
These analog signals were introduced as the voltage-
input to the circuit shown in Fig. 7(a). Similar results
are obtained when we take the input signal from a cha-
otic electronic circuit.
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Fig. 7. Nonlinear circuits with noninvertibleI–V characteristics.
(a) The resistors possessR = 2.2 k), the source voltage in the
battery is 10 V and the twin transistors are 2N2222 withβ = 140).
TheI–V characteristic of this circuit is shown in Fig. 4. (b) Another
circuit with a similarI–V characteristic.

The set of equations that describes one of our ex-
perimental situations is the following:

(23)

Xn+1 = aXn

[
1−Θ(Xn − q)

]
+ bYnΘ(Xn − q),

(24)Yn+1 = sin2[d arcsin
√
Yn

]
,

(25)Zn+1 = 4W3
n − 3Wn,

where Wn = 2Xn/s − 1, q = s/a, s = 10, b = 7,
a = π/2, d = 3,Θ(x) is the Heaviside function.

The first-return maps of the sequenceZn produced
by the theoretical model (23)–(25) and the experimen-
tal time-series produced by the nonlinear system of
Figs. 6 and 7(a) are shown in Figs. 8(a) and (b).

When the nonlinear circuit has anI–V characteris-
tic with many more maxima and minima, e.g., Fig. 5
(and this can be done in practice, see Ref. [39]), we
can produce a much more complex dynamics.

Nonlinear chaotic circuits can be described suc-
cessfully by discrete maps as Eqs. (20)–(22) (see, e.g.,
[41]).

However, in some cases it can be very helpful to
have a physical situation with a model based on a set
of well-posed ordinary differential equations.

In Ref. [42] we can find several models for chaotic
circuits as the following:

(26)
dX

dt
= α

[
f (x)− Y

]
,

(27)
dY

dt
= Y −X −Z,

(28)
dZ

dt
= βY + γZ,

Fig. 8. Modelling versus experiment. (a) Numerical simulation of
the dynamical system (23)–(25); (b) first-return map produced with
the real data (current measurements) from experiments using the
scheme of Fig. 6, where the circuit of the right is the one of Fig. 7(a).

(29)
dW

dt
= g(X),

wheref (x)= −X3 + cX, g(X) = ∑N
i=1 aix

i .
A comparison of different time-series is shown in

Fig. 9. The fixed parameter values areα = 285.714,
β = 1499.25, c = 0.144, γ = −0.51325. Note that
when theI–V characteristic of the circuit shown on
the right of Fig. 6 is a function with many extrema, the
produced time-series is more complex (see Fig. 9(b)).

Using our theoretical results we can make a very
important prediction here. A nonlinear physical sys-
tem constructed with chaotic circuits and a Josephson
junction [43] can be an ideal experimental setup for
the random dynamics that we are presenting here.

It is well-known that the current in a Josephson
junction may be written as

(30)I = Ic sinφ,

where

(31)
dφ

dt
= kV .

Here φ is the phase andV is the voltage across
the junction. Note that nature has provided us with a
phenomenon where the sine-function is intrinsic. Al-
though we have already explained that other nonin-
vertible functions can produce similar results, it is re-
markable that we can use this very important physi-
cal system to investigate the real consequences of our
results with function (1). In a superconducting Joseph-
son junctionk is defined through the fundamental con-
stantsk = 2e/h̄. However, in the last decades there
have been a wealth of experimental work dedicated to
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Fig. 9. Time-series generated by the dynamical system (26)–(29):
(a) g(x) = 4X3 − 3X; (b) g(x) = (1/256)(88179X11 − 230945×
X9 + 218790X7 − 90090X5 + 15015X3 − 693X).

the creation of electronic analogs that can simulate the
Josephson junction [45–48]. In that casek can be a pa-
rameter with different numerical values.

We have performed real experiments with a non-
linear chaotic circuit coupled to an analog Josephson
junction.

In our experiments we have used the Josephson
junction analog constructed by Magerlein [48]. This
is a very accurate device that has been found very use-
ful in many experiments for studying junction behav-
ior in different circuits. The junction voltage is inte-
grated using appropriate resetting circuitry to calculate
the phaseφ, and a current proportional to sinφ can be
generated. The circuit diagram can be found in [48].

The parameterk is related to certain integrator time
constantRC in the circuit. So we can change its value.
This is important for our experiments. We need large
values ofk in order to increase the effective domain
of the sine function. In other words, we need the ar-
gument of the sine function to take large values in a
truncated exponential fashion. This allows us to have
a very complex output signal. In our case the value of
k is 10000.

The voltageV (t) across the junction is not taken
constant. This voltage will be produced by a chaotic
system. In our case we selected the Chua’s circuit [40].
For this, we have implemented the Chua’s circuit fol-
lowing the recipe of Ref. [44].

The scheme of the Chua’s circuit constructed by us
can be found in Fig. 1 of Ref. [44].

Fig. 10. First-return map of the time-series generated with real data
from an experiment with an analog Josephson junction coupled to
the Chua’s circuit.

The following components were used:C1 = 10 nF,
C2 = 100 nF,L= 19 mH, andR is a 2.0 k) trimpot.

Chua’s diode was built using a two-operational-
amplifier configuration suggested in [44].

In our experiment, the voltage inC1 was used as
the driving signal for the Josephson junction. We were
interested in the famous double scroll attractor attained
with R ≈ 1880).

The differential equations that describe our experi-
mental system are the following:

(32)
dV1

dt
= 6.3(V2 − V1)− 9f (V1),

(33)
dV2

dt
= 0.7(V1 − V2)+ IL,

(34)
dIL

dt
= −7V2,

(35)
dφ

dt
= kV1,

(36)
dQ

dt
= sinφ,

wheref (V1) = −0.5[V1 + 0.3(|V1 + 1| − |V1 − 1|)]
andk = 104. Notice that this system has been rewritten
using adimensional variables (see Ref. [44]).

The results of the experiments are shown in Fig. 10
which is the first-return map of the time-series data
produced by direct measurements of the junction cur-
rent. The time-intervals between measurements was
10 ms. This system can produce unpredictable dynam-
ics. Fig. 11 shows the results of the simulation of dy-
namical system (32)–(36).
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Fig. 11. First-return map of the time-series generated by the dynam-
ical system (32)–(36). HereI = dQ/dt .

6. Conclusions

In conclusion, we have shown that functions of type
Xn = P(θzn), whereP(t) is a periodic function andz
is a noninteger number, can produce completely ran-
dom numbers. Certain class of autonomous dynamical
systems can generate a similar dynamics. This dynam-
ics presents fundamental differences with the known
chaotic systems. We have presented real nonlinear sys-
tems that can produce this kind of random time-series.
We have reported the results of real experiments with
nonlinear circuits containing direct evidence support-
ing this phenomenon.

Besides the fundamental importance of these find-
ings, these systems possess many practical applica-
tions. For instance, game theory tells us that in cer-
tain competitive situations the optimal strategy is a
random behavior. Specifically, it is necessary to limit
the competition’s ability to predict our decisions. We
can produce randomness using the discussed systems.
Another example is secure communications [49]. In
this context, the most important application of our sys-
tems is masking messages using random signals [50].
In some cases, when we use the usual chaotic systems,
the messages can be cracked because the time-series
are not truly unpredictable.

Now we will analyze very general ideas.
Just to facilitate our discussion (because it is

always important to have a name), we will call
the phenomenon studied in this Letter “deterministic
randomness”. The words “deterministic randomness”
have been used (metaphorically) in the past as a name
for chaos. However, the known chaotic systems are not

random. So we think this is a good name for the pres
ent phenomenon.

Deterministic randomness imposes fundamental
limits on prediction, but it also suggests that there
could exist causal relationships where none were pre-
viously suspected.

Deterministic randomness demonstrates that a sys-
tem can have the most complicated behavior that
emerges as a consequence of simple, nonlinear inter-
action of only a few effective degrees of freedom.

On one hand, deterministic randomness implies
that if there is a phenomenon in the world (whose
mechanism from first principles is not known) de-
scribed by a dynamical system of type (8)–(10) or
(20)–(22), and the only observable is a physical vari-
able asZn, then the law of this phenomenon cannot be
learnt from the experimental data, or the observations.
And, situations in which the fundamental law should
be inferred from the observations alone have not been
uncommon in physics.

On the other hand, the fact that this random dynam-
ics is produced by a relatively simple, well-defined
autonomous dynamical system implies that many ran-
dom phenomena could be more predictable than have
been thought.

Suppose there is a system thought to be completely
random. From the observation of some single variable,
scientists cannot obtain the generation law. However,
suppose that in some cases, studying the deep connec-
tions of the phenomenon, we can deduce a dynamical
system of type (8)–(10) or (20)–(22). In these cases,
some prediction is possible.

In any case, what is certain at this point is that some
dynamical systems can generate randomness on their
own without the need for any external random input.
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