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Abstract

We show that soliton interaction with �nite-width inhomogeneities can activate a great number
of soliton internal modes. We obtain the exact stationary soliton solution in the presence of
inhomogeneities and solve exactly the stability problem. We present a Karhunen–Lo�eve analysis
of the soliton structure dynamics as a time-dependent force pumps energy into the translational
mode of the kink. We show the importance of the internal modes of the soliton as they can
generate shape chaos for the soliton as well as cases in which the �rst shape mode leads the
dynamics. c© 1998 Elsevier Science B.V. All rights reserved.

PACS: 02.30.Jr; 05.45.+b; 52.35.Mw; 52.35.Sb
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1. Introduction

The propagation of solitons in the presence of inhomogeneities concerns a wide
variety of condensed matter systems. The traditional approach considers structureless
solitons and delta-function-like impurities.

Real scenarios involve �nite-width impurities and under certain circumstances, the
extended character of the soliton must be considered [1–4]. For instance, the length
scale competition between the width of inhomogeneities, the distance between them and
the width of the kink-soliton leads to interesting phenomena like soliton explosions [2].

In this paper we take into account the extended character of both the soliton and the
impurity and show that these considerations lead to the existence of a �nite number
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of soliton internal modes that underlies a rich spatiotemporal dynamics. We present a
model for which the exact stationary soliton solution in the presence of inhomogeneities
can be obtained and the stability problem can be solved exactly. We use the Karhunen–
Lo�eve (KL) decomposition to relate the excitation of soliton internal modes with the
sequence of bifurcations obtained as the amplitude of a space-time-dependent driving
force (�tted to the shape of the translational mode) is increased.

2. The model

The topological solitons studied in the present paper possess important applications
in condensed matter physics. For instance, in solid state physics, they describe domain
walls in ferromagnets or ferroelectric materials, dislocations in crystals, charge-density
waves, interphase boundaries in metal alloys, uxons in long Josephson junctions and
Josephson transmission lines, etc. [5,6].

Although some of the above mentioned systems are described by the �4-model and
others by the sine-Gordon equation (and these equations, in their unperturbed versions,
present di�erences like the fact that the sine-Gordon equation is completely integrable
whereas the �4-model is not) the properties of the solitons supported by sine-Gordon
and �4 equations are very similar. In fact, these equations are topologically equivalent
and very often the result obtained for one of them can be applied to the other [5].

Here we consider the �4 equation in the presence of inhomogeneities and damping:

�xx − �tt − �t + 1
2 (�− �3) =−N (x)�− F(x) ; (1)

where F(x) is a function with (at least) one zero and N (x) is a bell-shaped function
that rapidly decays to zero for x→ ±∞. An impurity of the kind N (x)�, but using
delta functions, has been presented in Ref. [7].

In ferroelectric materials � is the displacement of the ions from their equilibrium
position in the lattice, 1

2 (� − �3) is the force due to the anharmonic crystalline po-
tential, F(x) is an applied electric �eld, and N (x) describes an impurity in one of the
anharmonic oscillators of the lattice [8]. In Josephson junctions, � is the phase di�er-
ence of the superconducting electrons across the junction, F(x) is the external current,
and N (x) can describe a microshort or a microresistor [9]. In a Josephson transmis-
sion line it is possible to apply nonuniformly distributed current sources (F(x)) and to
create inhomogeneities of type N (x) using di�erent electronic circuits in some speci�c
elements of the chain [6,10].

In the present paper the functions F(x) and N (x) will be de�ned as,

F(x) = 1
2A(A2 − 1) tanh(Bx) ; (2)

N (x) =
1
2

(4B2 − A2)

cosh2(Bx)
: (3)

The case F = const: has been studied in many papers (see e.g. [5]). Here Eq. (2)
represents an external �eld (or a source current in a Josephson junction) that is almost
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constant in most part of the chain but changes its sign in x = 0 (this is very important in
order to have soliton pinning [1]). Microshorts, microresistors or impurities in atomic
chains [9] are usually described by Dirac’s delta functions (�(x)) where the width of
the impurity is neglected. The function N (x) is topologically equivalent to a �(x) but
it allows us to consider the inuence of the width of the impurity.

3. Stability analysis

Suppose the existence of a static kink solution �k(x) corresponding to a soliton
placed in a stable equilibrium state created by the inhomogeneities of Eq. (1). We
analyze the small amplitude oscillations around the kink solution �(x; t) =�k(x) +
 (x; t). We get for the function  (x; t) the following equation:

 xx −  tt −  t + 1
2 (1 − 3�2

k + 2N (x)) = 0 : (4)

The study of the stability of the equilibrium solution �k(x) leads to the following
eigenvalue problem (we introduce  (x; t) =f(x) exp(�t) into Eq. (4)):

− fxx + 1
2 (3�2

k − 1 − 2N (x))f =�f ; (5)

where �≡−�2 − �.
For the functions F(x) and N (x) (de�ned as Eqs. (2) and (3)) the exact solution

describing the static soliton can be written: �k(x) =A tanh(Bx). The spectral problem
(Eq. (5)) brings the following eigenvalues for the discrete spectrum: �n = 1

2A
2 − 1

2 +
B2(� + 2�n− n2 − 2); here � is de�ned as, �(� + 1) = (A2=B2) + 2. The integer part
of �([�]) de�nes the number of modes of the discrete spectrum.

The stability condition for the translational mode is, 16B4 + 2B2(5 − 7A2) + (1 −
A2)2¡0. When this condition is not ful�lled (thus the equilibrium point x = 0 is unsta-
ble) and A2¿1, then there will exist three equilibrium points for the soliton: two stable
(at points x = x1¿0 and x = x2¡0) and one unstable at point x = 0. This is because
for huge values of |x| the leading inhomogeneity is F(x), which is non-local and not
zero at in�nity. This inhomogeneity acts as a restoring force that pushes the soliton
towards the point x = 0. As a result of the competition between the local instability
induced by N (x)� at point x = 0 and the non-local inhomogeneity F(x), an e�ective
double-well potential is created. This is equivalent to a pitchfork bifurcation.

We should make some remarks about the stability investigation. Writing down Eq. (4)
we are making an approximation because the terms  2 and  3 are considered zero.
Under this assumption the solutions of Eq. (4) can be used as an approximation for
the kink dynamics only for small perturbation of the static soliton solution. However,
the stability conditions obtained for the di�erent modes are exact. In fact, when we
say that the translational mode is stable for some set of values of the parameters, this
means that in a neighborhood of this equilibrium point the e�ective potential for the
soliton center of mass is a well (a minimum). On the contrary, when the parameters are
changed such that the stability condition does not hold anymore, then a small deviation
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in the initial condition of the soliton center of mass will cause the soliton to move
away from the equilibrium position. The same is valid for the stability of the shape
modes. For example, if the stability condition for the �rst shape mode is not satis�ed,
then small perturbation of the soliton pro�le will cause the soliton to explode. This
has been checked numerically [11].

In general, the stability problems for perturbed soliton equations are very hard [9].
This is because in order to solve it, we �rst should have an exact solution of the equi-
librium problem (which is rarely the case), and then one should solve the eigenvalue
problem which usually has no solution in terms of elementary functions.

The investigation we have performed includes several steps. First, we have to solve
an inverse problem in order to have external perturbations with the “shapes” that are
relevant to the physical situations we want to discuss; second, we assure that the exact
solutions will be known to us, and third, we should be able to solve exactly the stability
problem. This last condition is ful�lled because Eq. (5) is a Schr�odinger equation with
a P�oschl–Teller potential [1–3]. The solution of this spectral problem can be found in
Ref. [12].

In our case we were lucky enough to obtain exact solutions to perturbations that
are generic and topologically equivalent to well-known perturbation models (e.g. the
pitchfork bifurcation).

4. Karhunen–Lo�eve analysis

Let us consider a space-time-dependent force G(x; t) beside the space-dependent
forces F(x) and N (x)�. In a previous work [1], Gonz�alez and Ho lyst found that if
G(x; t) has a spatial shape such that it coincides with one of the eigenfunctions of the
stability operator of the soliton, then it is possible to get resonance if the frequency of
the force also coincides with the resonant frequency of the considered mode. Therefore
we can pump energy only into the translational mode of the kink selecting a space-
time-dependent force of the form

G(x; t) = � cos(!t)
(

1

cosh�(B(x − x1))
+

1

cosh�(B(x + x1))

)
: (6)

In Fig. 1a we present a sequence of bifurcations of the soliton center-of-mass coordinate
Xc:m: = (

∫ l=2
−l=2 x�

2
x dx)=(

∫ l=2
−l=2 �

2
x dx) (sampled at times equal to multiples of the period

of the driving force) as the driving amplitude � is increased and other parameters
remain �xed (A= 1:22, B= 0:32, != 1:22, x1 = 2:5 and = 0:3). For these values of
A and B the stability condition for the translational mode is ful�lled, the soliton moves
in a single-well potential and the system is in a regime with three discrete modes
([�] = 3). Previous articles have studied the bistable case as well as the single-well
case created by inhomogeneities of the type F(x) [1,2]. In this article we want to stress
the complexity of the internal dynamics of the soliton when, besides F(x), there is an
impurity of the type N (x)�.
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Fig. 1. (a) Bifurcation diagram for the position of the center of mass of the soliton. (b) Relative weight of
the highest KL eigenvalue. (c) Number of KL modes that contains 99.9% of the dynamics.

We have integrated the equation using a standard implicit �nite di�erence method
with open boundary conditions �x(0; t) =�x(l; t) = 0 and a system length l= 80. We
use a kink-soliton with zero velocity as initial condition.

Poincar�e maps for the soliton center-of-mass coordinate have revealed quasiperiodic
and chaotic attractors for the non-periodic solutions of Fig. 1a: period one solutions
precede a window of quasiperiodic bifurcations (the torus entangles as the amplitude
of the time-dependent driving force increases). At a certain value a period two win-
dow appears and is followed by quasiperiodic (two-tori) bifurcations. For �= 0:55 the
Poincar�e maps reveal high-dimensional chaotic motion followed by period one solu-
tions.

The KL decomposition [13,14] allows to describe the dynamics in terms of an ade-
quate basis of orthonormal functions or modes. The eigenvalues �n can be regarded as
the weight of the mode n. Fig. 1b presents the greater eigenvalue normalized by the
weight, W =

∑
�n, whereas Fig. 1c presents the number of modes that contains 99.9%

of the weight.
Fig. 2 reveals the increasing excitation of the KL modes as the amplitude of the

space-time-dependent force increases. Note the sudden changes of the spectra when
periodic motion is regained (period-two for �= 0:40 and period-one for �= 0:60). For
these solutions the amplitude of the oscillations around the point x = 0 diminishes
even though the amplitude of the driving force has increased. This agrees with the
higher contribution to the dynamics of the few modes of shape whereas all the rest of
the modes decreased their contribution. Furthermore, for �= 0:60 the �rst shape mode
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Fig. 2. KL spectra for the sequence of bifurcations presented in Fig. 1. The inset shows the �rst mode of
the KL spectrum for �= 0:20 and �= 0:60.

replaces the translational mode as the leading mode of the dynamics. The inset of the
Fig. 2 presents the leading KL eigenmodes for the period-one solutions that initiates
and ends the sequence of bifurcations considered in this section. The eigenmode for
�= 0:20 appears to be the superposition of a pair of translational modes centered at
the equilibrium points for the soliton. Similar situation occurs for �= 0:60 but the
eigenvalue appears to be the superposition of a pair of shape modes.
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