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We perform numerical simulations of the dynamical behavior of a sine-Gordon chain in a heat bath, The
interaction with the heat bath is simulated by the Langevin formalism. The noise term is uncorrelated in both
space and time. We use the Karhunen-Loeve decomposition to study the effective number of degrees of freedom
as a function of temperature (i.e., of the noise dispersion). At low temperatures we find a spatially disordered
regime, characterized by a high number of degrees of freedom. At a temperature of the order of the soliton rest
mass we find a relatively sharp crossover to an ordered regime, characterized by a low number of degrees of
freedom, The spatial structure of the modes suggests that the transition is associated to the appearance of
thermally activated solitons. We also present an alternative estimate of the effective number of degrees of

freedom.

The sine-Gordon-like equations model a wide
variety of physical situations. This occurs frequently
in solid-state physics because the sine-Gordon
equation is the simplest wave-equation for a periodic
medium, Systems modeled by the driven damped
sine-Gordon equation display many of the
phenomena commonly associated to nonlinear
behavior, such as coexistence of solitons and chaos
[1], and turbulence [2]. Even richer behavior can also
be exhibited by sine-Gordon-like systems, as noise
induced pattern formation.

In this paper we study a sine-Gordon chain in a
heat bath in a range of temperatures. We find a sharp
crossover as a function of temperature with two
different definitions of the effective number of
degrees of freedom. The results are analyzed by
means of the Karhunen-Loeve [3] decomposition to
examine the variation of the effective number of
degrees of freedom. The Karhunen-Loeve analysis
provides an estimate of the number of degrees of
freedom as the number of modes containing an
arbitrary fraction of the correlation [4] and has been
used by Sirovich [S] and Knight [6] as a procedure
for the determination of coherent structures. As this
estimate may become unreliable when the weight
distribution is highly inhomogeneous, we also
discuss an alternative estimate of the number of
degrees of freedom that contains no arbitrary cutoff
and partially accounts for inhomogenieties in the
weight distribution.
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Figure 1. Degrees of freedom vs. thermal noise. Here
N is the number of modes that contains 99.99% of
the weight, W=Y 1, , and o is the variance of the
noise. Averages are performed over ten realizations.
The inset shows the curves re-scaled with the length.
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The sine-Gordon equation ¢, — ¢, —sin¢g =0,
models a chain of coupled pendula. We couple this
chain of pendula to a heat bath following the
Langevin approach:

Pux — @y —Sing = ap, —R(x,1) (n

We measure all quantities in their natural units,
s0 our equations are dimensionless. The first term
on the right-hand side of Eq. (1) is the loss term
representing the energy flow to the reservoir, while
the second term is the noise associated with «,
giving the disordered thermal-energy input to the
system. The noise term is "white" both in space and
time. The effect of the random force R(x,t) is "to
heat" the pendula: a soliton-like excitation can
appear when a given pendulum escapes from its
potential well. We use flat initial conditions
(¢(x,0)=¢,(x,0)=0) and open boundary
conditions (¢,(0,t) = ¢,(L,t) = 0). The parameters
of our simulations are @ =0.252, Ax =0.039 and
At =0.035.

The Karhunen-Loeve decomposition allows us to
describe the dynamics in terms of an adequate basis
of orthonormal functions or modes. The field w(x,t)
to be decomposed represents the fluctuations of
¢(x,t) with respect to the time-averaged spatial
pattern ¢, (x). We find a basis of orthonormal
functions ¥,(x) by solving an integral equation
whose kernel is the two points correlation function
K(x,x')=(o(x,t)o(x',t’'})) (here (...) means
time average). The functions ¥,(x) are the
eigenfunctions of the integral equation,

L
fK(x,x')‘Pn(x')dx'= A% (x) @)
[

The eigenvalues 4, can be regarded as the weight
of the "mode" n; we can estimate the number of
modes effectively contributing to the dynamics as an
arbitrary percentage of the total weight W=3 4, .

In Figure 1 we present for sine-Gordon chains of
different lengths the sharp crossover related with the
thermal activation of solitons. It can be seen that the
error bars increase as the system experiences the
dynamical transition to the solitonic regime.

Alternatively we can define a "configuration
entropy":

S~-SP,InP,;P,= 3)
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Figure 2. "Configuration entropy" based treatment.

In Figure 2 we present exp(S) as an estimate of the
effective number of degrees of freedom plotted as
varies the variance of the noise; this estimate
removes the arbitrary selection of percentage of
weight contained by the modes. The inset also
shows an extrapolation to infinite length (denoted
with filled triangles).

The noise induced pattern phenomenon in our
system has been also qualitatively characterized.
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