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Roughening transition in a thermal sine-Gordon system

R. E. Rangel, L. E. Guerrero and A. Hasmy.

Centro de Fisica, Instituto Venezolano de Investigaciones Cicntificas,

Apartado 21827, Caracas 1020 A, Venezuela.

We relate the appearance of noise induced solitons in a sine-Gordon system with the roughening exponent,
defined as the scaling exponent of the length of the ensemble average of the standard deviation of the height of
the spatiotemporal profile. We find that before the onset of the noise-induced transition to the solitonic regime,
the roughening exponent is zero as would correspond for a white noise signal. After the activation of solitons
this exponent exhibits a crossover from ~ 0.70 to ~ 0.50. We point out the connection of our results to models
for surface growth and random deposition, particularly, the stochastic Kardar-Parisi-Zhang model.

In many physical systems like for example
crystal growth [1] and two phase flow in porous
media [2-3] the dynamics and geometry of surfaces is
attracting an enormous interest.

In this paper we characterize geometrically the
appearance of noisy activated solitons in a sine-
Gordon model [4]. We show that this system
exhibits two different self-affine regimes after the
onsct of the solitonic regime. We also relate our
results with the Kardar-Parisi-Zhang equation (KPZ)
or random Burgers equation, which has been very
successful in explaining a broad range of structures
generated by non-equilibrium stochastic processes
[51.

The random and damped sine-Gordon model
describes nucleation-dominated crystal growth [6] if
one considers the solution ¢(x,t) as the height of a
one dimensional surface. The considered model is
given by the following dimensionless equation:

O — Oy —sing =a¢, - R(x,t) m

In our simulations the noise term R(x,t) is
uncorrelated both in time and space. We use flat
initial conditions (¢(x,0) = ¢,(x,0) =0) and open
boundary conditions ( ¢,(0.t) = ¢,(1,t)=0). In all
the results to be presented in this article, a =0.252
and ! =160; we discretize the equation into 4096
points.

Figure 1 shows a log-log plot of o(L) as a
function of L, where o(L) is the ensemble average
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Figure 1. Ino vs. InL for increasing values of the
variance of the noise. We present for the curves
corresponding to solitonic regimes linear fits with
slopes ~ 0.70 and ~ 0.50.

of the standard deviation of the spatiotemporal
profile as a function of the length scale L, i.e.,
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Here (...) means ensemble average. In our
simulations we average over 5000 realizations for
each size L sampled once the stationary regime has
settled down, in such a way thato(t,L)= o(L). We
obtain different cnscmbles by taking the
surface ¢(x,t) separated by a long cnough time
interval and by dividing the total length [ in
segments of size L. In Eq. (2) the index i run over
the number of points N; contained in the segment of
length L.

The surface ¢(x,t) is a random or stochastic
function being the solution of a nonlincar evolution
equation with noise; if ¢(x,t) is a sclf-affinc
function we expect (L) to scalc as o(L) 53 {71,
where ¢ is the Hurst exponent [2], which is called in
the casc of surfaces the roughening exponent. This is
confirmed in Figure 1 that shows the expected
scaling behavior for five different variances of the
noise (from below 1.7, 10.0, 20.0, 283.3 and
3,333.3). The third curve is around the dynamic
transition to the ordered statc with a reduced number
of degrees of freedom [4].

The roughening exponent ¢ displays bencath
the transition (the pair of lower curves) the behavior
characteristic of white noise, i.e., { =0. Above the
transition (upper curves) the roughening exponent
exhibits two different scaling behaviors revealing a
crossover behavior: for small length scales{ ~ 0.70
while for larger length scales, { ~ 0.50.

We now relate our results with the KPZ modcl
[5], which is given by the equation,

oh  *h Alom
7‘“?*3(&) FR(x1) 3)

Here h(x.t) is a surface which bchavior obeys
the relation O'KPZ(I,L)=LCf(1/L“), with
f(x)—> const as x — o0 and f(x)~x*'* for small
x;for A#0, {=1/2and z=3/2,and for A =0,
{=1/2and z=2. For t >> L’ the station
regime is achieved and Oypy(t,L) = Ogp (L) o< L,
whereas for t << L?, om(t,L)=0'KPZ(t)o<LC/‘.

In our results we find above the onsct of solitons a
very interesting crossover from non-KPZ bchavior
(¢ ~0.70) to KPZ behavior ({ ~ 0.50). Such a
kind of roughening crossover is found for instance in
models of displacement in porous media [3]; besides
this, continuum modcls of crystal growth considered
by Villain [1] also show a non-KPZ bchavior at
small length scales.

Considering the picture of solitons and
antisolitons being cxcited randomly in a random
sine-Gordon system [8], we interpret tentatively our
results as an effective coherence that appears above
the transition to the ordered state. The two different
sclf-affine regimes after the dynamic transition
should be related with two different coherence
strengths. This shows itself in a stronger roughcning
exponent at small length scales. Finally it appears
that for sufficiently large scales, the solitonic
cohcrence ccascs and a crossover to a zcro
roughcning cxponcent takes place (see upper pair of
curves in Figure 1).

Summarizing, we have shown quantitatively that
the coherence of the ordered state appears to have
three different regimes with well-defined crossover
lengths. Further investigation is in progress to
precise the dynamic exponent {/z as well as the
meaning of the crossover lengths we have found.
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