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QUASIPERIODIC ROUTE TO SOFT TURBULENCE IN LONG JOSEPHSON JUNCTIONS
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We present a numerical study of the onset of a turbulent-like regime in long Josephson
junctions, We show that the local generation of different linear combinations of
frequencies in the quasiperiodic regime leads to the breakdown of coherence of the

spatiotemporal profile.

The long Josephson junction (LJJ)
provides a field in which experiments and
simulations may act interactively in the
study of spatiotemporal phenomena. The
interplay between temporal chaotic
dynamics and solitonic structures in LJJ has
received a great deal of attention in recent
years. Even richer behavior can also be
exhibited by LJJ, like turbulent-like
behavior, an interesting and fundamental
dynamical state which is not well
understood.

In this paper we explore the transition to
the turbulent state in LJJ. We show that the
onset of the turbulent-like regime is
preceded by a quasiperiodic regime which
suppposes the generation of a spatiotemporal
excitation which oscillates unlocked to the
driving frequency. We show for this
quasiperiodic regime that different local
generation of linear combinations of the two
basic frequencies (the frequency of the
driving force and the one of the
spatiotemporal excitation) affect the
coherence of the spatiotemporal profile.
When the system is driven harder the
coherence of the spatiotemporal profile
decreases. This last state can be regarded as
a soft turbulence regime, ie, a regime
globally disordered in space and in time {(1).

The forced LJJ considered by us has been
discussed extensively (2). We model this
system with the usual sine-Gordon-like
equation,

Oxx~0tt—sing=agt-psin (Qqt) (1)

where ¢ = ¢(x,t) is the phase difference of
the superconductin? order parameter
between each side of the barrier and the
term a¢t represents quasiparticle loss. The
distance is normalized to the Josephson
penetration depth, time is normalized to the
inverse of the Josephson plasma frequency,
the rf amplitude p is normalized to the
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critical current and Qg is the normalized
applied frequency. The external applied field
I1s taken into account through
0x(0,t)=¢5(L,t)=n, where L is the junction
length and n is a measure of the éxternal
magnetic field. In this gaper parameter
values are L=104,, =0.252 and Q4=0.65. We
employ open boundary conditions, 1=0.0
homqgeneous forcing and flat’ initiaf
conditions so that the pattern formation
phenomena is fully spontaneous.

Figure 1 plots the Ehase difference A¢
between two points of the junction for each
period of the rf drive. In this Figure
solutions for two values of the amplitude of
the driving force (p=2.0079 and p=2.010) are
presented superimposed. Both solutions
exhibit an initial spatially homogeneous
transient followed by the spontaneous
formation of a spatial profile.

For p=2.0079 Figure t (inner bands)
reveals that once the breather forms from
the initial flat condition there is a long
transient both in space and time. These long

0921-4526/90/303.50 © 1990 - Elsevier Science Publishers B.V. (North-Holland)



1658 L.E. Guerrero, M. Octavio

P a—

POWER SPECTRA

0.5 1.0 1.5
FREQUENCY

FIGURE 2

transients for the dissa(fearance of complex
patterns have received attention in recent
years (3). In the present case this
phenomenon corresponds to the increasing
difficulty of the system to attain a response
which oscillates Tocked to the frequency of
the driving force. .The final state for
p=2.0079 corresponds to a breather
oscillating with a frequency equal to half the
driver.

As the system is driven harder the
system ceases the long transient behavior
(in space and in time) via generation of a
quasiﬁer‘iodic response: the system generates
at the onset of pattern formation a
breather-like excitation unlocked to the
frequency of the driving force. This
corresponds to the outer bands in Figure |
(p=2.010).

In Figure 2 the continuous line represents
the power spectrum of the voltage (V « ¢¢) at
the middle of the junction for p=2.010. At
this value of the amplitude of the driving
force the quasiperiodic regime exhibits a
doubling of the torus: the response of the
system has a frequency (Q/Qg=0.1333)
inconmensurate with the drivin]g force as
well as the double of this one. The dashed
lines in Figure 2 re(fresent the power
spectrum of the phase qifference A¢ between
two points of the junction: besides the
increasing complexity of the spatiotemporal
response, this denotes, in comparison with
the local power spectrum, that different
points of the junction differ in the way the
different frequencies linearly combine. This
has the effect of reducing the coherence of
the spatiotemporal profile: there is a
competition between local (single-particle)
and global (collective) dynamics. In effect
the system is becoming uncoupled.

The coherence of the spatial profile
decreases as the forcing is increased
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further. This phenomenon <can be
characterized studying the correlations in
space (1). The dashed lines in Figure 3 show
the coherence spectrum for the previous
quasiperiodic regime (p=2.010) whereas the
continuous line corresponds to p=2.040. This
last state corresponds to a soft
turbulent-like regime, a regime in which
there is a breakdown of the pattern
formation ability of the system fl). The
dynamic attractor for p=2.040 does not
exhibit fractality and reveals a
high-dimensional regime distinct from low
dimensional chaos.

Finally, we emphasize that the transition
from the two frequency quasiperiodicity to
turbulence is direct: only two
inconmensurate frequencies apE)ear in the
onset of turbulence in contrast with
suggested routes which require at least
three (5). The transition from
quasiperiodict?/ to turbulence found in this
work is also different to the universal route
from quasiperiodicity to low-dimensional
chaos (4) whic supposes the
multifractalization of the torus.
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