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Quasiperiodicity in Long RF-Biased Josephson Junctions
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We present and discuss numerical simulations, using a modified sine-Gordon equation, of long
Josephson junctions in a magnetic field and in the presence of rf radiation. Quasiperiodicity
arises from the coexistence of the frequency of the driving force and the natural frequency of

an oscillating spatial

1. INTRODUCTION

The Josephson junction has proven to be quite
useful in the study of the various routes to
chaos 1in dynamical systems as well as the nature
of chaotic behavior. In fact, few dynamical sys-
tems exhibit as many routes to chaos as the Jose-
phson junction with no spatial extent does (1),
such as the transition to chaos via period dou-
bling, intermittency, crises and quasiperiodicity
(2). Even richer behavior can be obtained in
long Josephson Jjunctions, which can also support
solitonic solutions and its dynamics can have
both spatial and temporal modes.

In this paper we present simulations on long
Josephson junctions 1in the presence of an rf
drive and an applied magnetic field. We show
that this system exhibits a two-frequency quasi-
periodic transition to chaos, which arises from
the interplay between the natural frequency of
the soliton, which can be excited in this system,
and the external drive. This is different from
the usual quasiperiodic route observed in the
presence of two inconmensurate driving frequencies
in small Josephson junctions. In fact, the quasi-
periodic transition observed in long Jjunctions
arises from the interplay between the spatial
mode and the rf drive making it analogous to
the quasiperiodic transition observed in Rayleigh-
Bérnard convection in fluids.

2. THE PHYSICAL MODEL AND ITS SIMULATION

A" Josephson junction is considered to be Tong
when its TJength is greater than the Josephson
penetration depth *j. We model such a long junc-

tion with the wusual sine-Gordon 1like equation
(3).
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Oy (0,t)= &y (L,t)=n (2)

where ¢ is the phase difference of the supercon-

ducting order parameter between each side of
the barrier and its derivative in time is the
voltage across the Jjunction. In eqn. (1) the

distance is normalized to the Josephson penetration
depth, time is normalized to the inverse of the
Josephson plasma frequency and the rf amplitud
P is normalized to the maximum critical current.
The term a¢; represents quasiparticle loss. The
constant n is a measure of the external magnetic
field. We use realistic values for the different
parameters wich 1in this paper are L=5, @ =0.252,
n=1,25, £ =0.65. We integrated egn. (1) from
flat initial conditions using a standard implicit
finite-difference algorithm and plot parameters

structure of soliton-like character.
subharmonic response at either of those frequencies.

The quasiperiodic regime presents
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Fig.1. Phase space ¢+(t)vs.¢(t): trapped quasiper-
iodic solution in two wells of the potential.

at the center of the junction.

3. QUASIPERIODIC TRANSITION TO CHAOS

Above the threshold of energy required for
the creation of kinks or fluxons , the system
is chaotic and exhibits a finite average voltage
because solutions are free-running: They diffuse
from one well to another and correspond to propa-
gation of excitations along the barrier. Dissipative
collisions of fluxons generate a mixture of co-
herent and 1incoherent excitations, nevertheless
the motion 1is still governed by an strange at-
tractor (4) despite the many degrees of freedom
involved; this chaotic regime is an example of
higher dimensional temporal chaos. Breather so-
lutions are also possible in this regime: col-
lisions between fluxons eventually lead to their
annihilation (5) into a bound state and the
breather oscillates at the natural frequency
(% =1.0) of the modified sine-Gordon equation.

In Fig.1 we show a typical quasiperiodic so-
lution which can be observed for a variety of
parameters in phase space. Since only one external
drive 1is present, the system itself must be the
origin of the second frequency dinconmensurate
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Fig. 2. Voltage power spectrum Sgt(5)vs. (2/%)
higher peaks corresponds to the drive and breather
frequencies.

with the external drive. In Fig.2 we show the
power spectrum as a function of frequency for
the same parameters as in Fig.1. Two peaks are
clearly visible at (2/94)=1.0 and =v3. The first
one obviously corresponding to the rf drive fre-
quency. The second corresponds to the frequency
of oscillation of the breather-like excitation.
Then, the origin of the quasiperiodicity is clear:
it arises from the irrational relationship between
the forcing frequency and the oscillation of
the spatial mode, the latter being a result
of the external ac bias applied to the system.
Thus, once again the Josephson Jjunction exhibits
behavior quite analogous to other dynamical
systems. In this case, the observed behavior
is quite similar to that of Rayleigh-Bénard con-
vection, where an oscillating drive is applied
either through an oscillating temperature dif-
ference (6) or through an oscillating external
magnetic field (7), the temperature difference
acting 1in both cases as the equivalent of our
magnetic field. the main difference between the
two cases arises from the fact that the spatial
oscillation in the Josephson junction 1is of
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Fig. 3. Poincaré map ¢+(nT)vs.¢(nT): note vari-
ation in the density of points.
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Fig. 4. Poincaré map ¢¢(nT)vs.¢(nT): doubling of
the torus.

solitonic character. Work 1is 1in progress to de-
termine the wuniversality of this transition by
the study of its multifractal character.

If the drive is increased further, it is pos-
sible to observe a variety of phenomena. Subhar-
monic reponse at the driving frequency produces
regions of the quasiperiodic attractor visited
more frequently than others and eventually a
periodic window appears; this effect is shown
in progress in the Poincaré map of Fig.3; an
experimental map analogous to this portrait has
been reported for the forced Rayleigh-Bérnard
system (7). Occasionally, the quasiperiodicity
can bifurcate due to the generationof subharmonics
at the breather frequency while the system remains
quasiperiodic. This doubling of the torus can
be seen quite clearly in the Poincaré map of
Fig. 4.

4. CONCLUSIONS

We have shown that quasiperiodicity can be
autonomously excited in a long Josephson junction
with a single oscillating drive by the interaction
between the spatial and temporal modes of the
system. This quasiperiodic behavior is quite
analogous to that of higher dimensional systems
such as Rayleigh-Bénard convection and presents
evidence for the universality of the Qo to chaos
transition in dynamical systems.
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