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Abstract:

The appearance of solitons in a random sine-Gordon system is related to the rough-
ening exponent, {, defined as the scaling exponent of the length of the ensemble
average of the standard deviation of the height of the spatiotemporal profile. We
show that the coherence of the ordered state appears to have three different regimes
with well-defined crossover lengths. After the activation of solitons, there is a very
interesting crossover from non-Kardar-Parisi-Zhang® behavior (¢ ~ 0.7) to KPZ -
behavior ({ ~ 0.5); additionally, for sufficiently large scales, a crossover to a zero
roughening exponent takes place. For the transient we calculate from flat initial
conditions the common dynamic exponent ({/z ~ 0.9) for all these regimes. This
last result reveals that the surface grows faster than is predicted by the KPZ model.
We point out the connection of our results to the Sneppen universality class® and
discuss the crossover between the conditions of global dynamics and the conditions
of local dynamics at different length scales in the stationary regime.

1. INTRODUCTION

The interplay between nonlinearity and noise results in fascinating physics in which, for
example, growing interfaces develop fingers and overhangs.! The steady state of such in-
terfaces remains self-affine and can be characterized by Hurst exponent.? Also, if the noise
is strong enough, nonlinear solutions like solitons can be excited: statistical coherence
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appears as the random forcing is increased, and the system experiences a sharp crossover to
an ordered regime characterized by a reduced number of degrees of freedom.3 This process
of noise-induced organization for the Sine-Gordon Chain has been characterized by a rough-
ening exponent? as in dynamically driven interfaces in unstable and stable displacement in
porous media.’ The popular model of Kardar-Parisi-Zhang® has been very successful in
explaining the roughening exponents measured in many surface growth models.2 However,
many experiments indicate the existence of at least two new universality classes.”® In fact,
in a recent model proposed by Sneppen,? the interface grows by a global search of optimal
sites with quenched randomness, yielding long range correlated phenomena characterized
by dynamic scaling exponents that differ from the KPZ universality class. Sneppen also
pointed out the limitations of his model, arguing that global rules do not necessarily corre-
spond to all regimes in experimental situations or models, and suggested a possible crossover
from global rules below a certain scale to local rules for larger scales. This situation should
be present in experiments on stable fluid displacement in porous media.”

2. THE RANDOM SINE GORDON CHAIN AND THE
SOLITON GAS

In this paper we report numerical simulations using a straightforward discretization of the
Sine-Gordon equation in a heat bath. The random and damped Sine-Gordon model is
described by the following dimensionless equations:

¢11: - ¢tt — sin ¢ = a¢t - R(IE, t) ’ | (1)
(R(z, t)) =0, (2)
(R(z, )R(z', t')) = 2akT6(t — t')6(z — «'). 3)

This model represents a chain of tightly coupled pendula interacting with a thermal
reservoir. In our simulations the thermal noise term R(z, t) is uncorrelated both in time
and space. We use flat initial conditions (¢(z, 0) = ¢:(x, 0) = 0) and open boundary
conditions (¢z(0,t) = ¢-(I,t) = 0). In all the results to be presented in this article,
At = 0.035 and Az = 0.039.

The random and damped Sine-Gordon model has been previously considered by Biittiker
and Landauer!? in the overdamped limit and for a low level of noise. In this case the second
derivative in time ¢y is neglected, and the particles have negligible inertia in the presence
of the friction a. Krug and Spohn!! also included an additional term on the right side of
Eq. (1) representing a uniform driving force F' that assures the existence of the solitons.

In this paper we study the case when F = 0, but allow the intensity of the noise to be
high. We would like to remark that in Ref. 11 a stochastic model of the kink gas (proposed
in Ref. 10) was used to simulate the regime considered in this work. We also stress that our
noise drive is “white” both in space and time and differs from the quenched type of noise
used by Parisi'? and by Sneppen.?

In our case, the particles have finite inertia. Therefore, spatiotemporal profiles above
the roughening transition®* are not just cases where ¢(z, t) is such that the chain lies
with segments in valleys of the potential V' = V(1 — cos(¢(z, t))) which are connected by
static kinks or antikinks (overdamped limit). We have instead solitons that move over a
finite length along the chain. This is because of the finite energy the solitons can acquire
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and dissipate. We use V5 = 1 in our paper. This process of activation of solitons and
their subsequent motion along the chain is not like Brownian motion, but maintains a
spatiotemporal coherence, which gives rise to an anomalous roughening exponent ¢ and an
anomalous dynamic scaling § at small length scales. For sufficiently long scales however,
we show below that the dynamics is like that of a kink gas. This occurs for decreasing
length scales as the amplitude of the dissipation increases, i.e., a increases, approaching the
overdamped regime. This picture is perfectly consistent with previous developments.10:11

3. ANOMALOUS ROUGHENING»: TRANSIENT AND
STATIONARY REGIMES

In Fig. 1 we present the standard deviation of the spatiotemporal profile,

1 N -2 1 Ny,
Y . _ 2 S .
O'(L, t)— < [NL §(¢t ¢)} >a ¢ NL §¢11 (4)

as the system evolves from flat initial conditions (¢(z, 0) = 0 and ¢y(x, 0) = 0). The
index 7 runs over the number Ny, of points contained in the segment of length L. Here
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Fig. 1 Evolution towards the stationary regime of the standard deviation of the spatiotemporal profile
(a = 0.252). We discretized the equation into 8192 points for I = 320.
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a = 0.252 and the variance of the noise equals 3,333.33 (Ref. 3 presents curves for the onset
of the solitonic regime as the variance of the noise is increased) and (...) means ensemble
average (we consider realizations from flat initial conditions in all the cases but the upper
curve which corresponds to the stationary regime). .We plot log(c(L, t)) versus log(L) for
different times. The following features can be appreciated in Fig. 1: (1) the function o(L, t)
for small length scales (L < 1.25) evolves towards a stationary state faster than for larger
scales; and (2) the scaling of o(L, t) for very large times is such that the curve essentially
do not grow any more (in the stationary regime, o(L) = o(L, t — 00)) and approaches two
different scaling exponents. Let us first analyze the stationary regime in which the time of
computation is such that ¢ >> t.(L) and it is expected that ¢.(L)/L* = 1. Here z is the
ratio {/f3, between ¢ (the roughening exponent) and the dynamic exponent 3. We can call
tc(L) the crossover time.!3

The upper curve of Fig. 2 corresponds to the stationary regime for o = 0.252; this curve
reveals two different scaling behaviors o(L) = L¢, particularly, a KPZ behavior (¢ = 0.50)
for larger scales. For small length scales ¢ = 0.69+0.01 whereas ¢ = 0.491:£0.002 for larger
scales. For very large length scales a crossover to zero roughening exponent takes place.
The crossover length for the scaling behavior depends on the value of the dlss1pat10n a and
appears to be the same for different variances of the noise.*
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Fig. 2 Stationary regimes (I = 160). Logo vs. log L for a = 0.252 (upper curve) and a = 25.2 (lower
curve); « is a measure of the damping. We present linear fits with slopes ~ 0.70 and ~ 0.50 for the upper
curve; we also present fit with slope ~ 0.46 for the lower curve.
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Fig. 3 Transient regime (I = 320). Logo vs. logt for o = 0.252. The three different curves correspond

(from below to above) to the three different values of the roughening exponent (¢ ~ 0.70, ¢ ~ 0.50 and
¢ ~0.0).

The lower curve in Fig. 2 corresponds to the value a = 25.2. In this case we find that
the crossover length has shrunk to a negligible value and there is only one scaling behavior
o(L) =~ LS, with ¢ = 0.457 + 0.004.

In Fig. 3 we plot log(o(L, t)) versus log(t) for & = 0.252. The three curves correspond to
different lengths in the chain which are associated with different scalings in the stationary
regime (i.e., ¢ = 0.70, ¢ = 0.50 and ¢ =2 0.0). We find that for sufficiently small values
of ¢, the three curves give a scaling o(t, L) =~ t# with 8 = 0.90. As the system evolves,
the curves begin to separate and for the shortest lengths the stationary regime is reached
early. For L corresponding to the roughness exponent ¢ £ 0.0 in the stationary regime, the
dynamic exponent exhibits a crossover from 3 = 0.90 to 8 ~ 0.283 % 0.008.

Figure 4 is the same kind of plot as Fig. 3 but for a = 25.2. We obtain a scaling with
B = 0.40 for the initial times. Consistently, the scaling with 8 =~ 0.90, is absent. For the
larger L, the upper curve reveals that there is another linear regime with 8 =~ 0.25274:0.0004.
Both values are around the KPZ value # = 1/3. These results can be explained as in the
overdamped limit (o — oo) we expect to have only the case with §=1/3.
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Fig. 4 Transient regime (I = 320). Logo vs. logt for the overdamped regime (@ = 25.2). Curves
correspond (from below to above) to the two different values of the roughening exponent (¢ ~ 0.46 and
¢ ~0.0).

4. CONCLUDING REMARKS

There has been some controversy in the literature concerning the random and damped Sine-
Gordon model in the overdamped limit. Rost and Spohn made an enlarged Noziéres-Gallet
renormalization analysis,!* and concluded that the nonlinear term in the KPZ equation is
indeed generated but for the case when the driving force F' #% 0. All these analyses concern
the case in which the pinning force is small, i.e., Vj < 1. Therefore KPZ behavior should be
present for sufficiently large scales. The calculations of Krug and Spohn!! for the case of low
levels of noise and a dc driving force F' # 0, also give KPZ behavior with a temporal scaling
given by § = 1/3. Our results confirms this picture also for the case of zero dc driving
force and sufficiently high levels of noise and for the large scale behavior. However, the new
scaling regime is different, with new scaling exponents and the existence of a crossover length
within which the anomalous exponents exist. We call the non-KPZ exponents anomalous.
We ascribe these new exponents which are bigger than the KPZ exponents to the coherence
that the solitons maintain statistically along the crossover length I.. Within this length
there is global behavior, whereas solitons separated for length larger than /. behave like
a kink gas, with each one acting individually; at these scales the dynamics is local. It is
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interesting that this qualitative difference also makes the point in the Sneppen model in
which dynamics is just global. The Sneppen model gives rise to an exponent # = 0.9, similar
to ours. However, his roughening exponent, ¢ = 0.63 is quite different than our exponent
¢ = 0.7. We could consider our exponents as belonging to a new universality class: the
literature reports experiments in which an anomalous roughening exponent is measured and
coincides with our number.”15
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