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Abstract - The appearance of thermally activated solitons in a sine-Gordon system is related to 

the roughening exponent ~, defined as the scaling exponent of the length of the ensemble 

average of the standard deviation of the height of the spatiotemporal profile. Before the onset of 

the noise-induced transition to the solitonic regime, the roughening exponent is zero as it is for a 

white noise signal. After the activation of solitons, there is a very interesting crossover from 

non-KPZ behavior (~ ~ 0.70) to KPZ behavior ( ~ -  0.50); additionally, for sufficiently large 

scales, a crossover to a zero roughening exponent takes place. In this paper we precise the 

underlying dynamics of the different regimes that appear at different scales via geometric 

characterization as the size of the system and the friction coefficient are varied. 

I N T R O D U C T I O N  

Nonequilibrium processes can give rise to interesting self-similar and universal behavior [ 1 ]. However, 

the mechanisms of self-organization and emergence of cooperative behavior are not well understood. 

The driven and damped sine-Gordon equation displays many of the phenomena commonly associated with 

complex systems, particularly, it exhibits noise-induced pattern formation. The randomly driven sine-Gordon 

system experiences a sharp crossover to an ordered regime characterized by a low number of degrees of 

freedom and associated with the activation of solitonic excitations [2]. After the onset of the solitonic regime the 

spatiotemporal prof'tles exhibit two different self-affined regimes [3]. One of these regimes can be related with 

the Kardar-Parisi-Zhang equation (KPZ) or random Burgers equation, which has been very successful in 

explaining a broad range of structures generated by non-equilibrium stochastic processes [4]. In this paper we 

precise the underlying dynamics by geometrically characterizing the different regimes that appear at different 

scales as the relevant parameters are varied. 

THE RANDOM SINE-GORDON CHAIN 

The sine-Gordon equation 4~xx - ~)tt - sin ~ = 0 models a chain of coupled pendula. We couple this chain of 

pendula to a heat bath following the Langevin approach, obtaining in this way the random and damped sine- 
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Fig. I./og or vs. log L for increasing values of the variance of 
the noise. We present for the curves corresponding to solitonic 
regimes linear fits with slopes ~ 0. 70 and ~ 0.50.  We 
discretized the equation into 4096 points and the parameters 
values are ~t = 0. 252 and l = 160. 

Gordon model: 

¢xx - Ott - s in  ¢ = otOt - R(  x, t)  (1) 

All equations are written in their dimensionless form with all quantities measured in their natural units. The 

first term on the right-hand side of Eq. (1) is the loss term representing the energy flow to the reservoir, while 

the second term is the noise associated with a ,  giving the disordered thermal-energy input to the system. The 

noise term is uncorrelated both in time and space. The effect of the random force R(x ,  t )  is "to heat" the 

pendula: a soliton-like excitation can appear when a given pendulum escapes from its potential well. We use flat 

initial conditions ((~(x, O) = (~t(x, 0) = 0) and open boundary condit ions ( ~x(O, t)  = (~x(L, t)  = 0). The 

parameters of our simulations Ax = 0. 0 3 9  and A t  = O. 0 3 5 .  

The random and damped sine-Gordon model describes nucleation-dominated crystal growth [5] if one 

considers the solution ~(x ,  t)  as the  height of a one dimensional surface. 

T H E  S O L I T O N  GAS AS A R A N D O M  F R A C T A L  

In Fig. 1 ( tx = 0. 2 5 2 )  we present a log-log plot of t r (L )  as a function of L, where tr(L) is the ensemble 

average of the standard deviation of the spatiotemporal profile as a function of the length scale L, i.e., 
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Fig. 2. log tr vs. log L for different values of the measure of 
the damping ct (from below a equals 25.2, 2.52, 0.252, 
0.0252 and 0.0) and I = 160. 
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Here (...) means ensemble average. In our simulations we average over 5000 realizations for each size L 

sampled once the stationary regime has settled down, in such a way that o(t,  L) = tr (L) .  We obtain different 

ensembles by taking the surface (~(x, t) separated by a long enough time interval and by dividing the total length 

l = 160 in segments of  size L. In Eq. (2) the index i runs over the number of points N L contained in the 

segment of length L. 

The surface (~(x, t) is a random or stochastic function being the solution of a nonlinear evolution equation 

with noise; if (~(x,t) is a self-aft'reed function we expect tr(L) to scale as tr(L) o, L ~ [6], where ( is the Hurst 

exponent [7], which is known in the case of surfaces the roughening exponent. This is confirmed in Fig. 1 that 

shows the expected scaling behavior for five different variances of the noise (from below 1.7, 10.0, 20.0, 

283.3 and 3,333.33) .  The  third curve is around the dynamic transition to the ordered state with a reduced 

number of degrees of freedom [2]. 

The roughening exponent ( displays beneath the transition (the pair of lower curves) the behavior 

characteristic of white noise, i.e., ( = O. Above the onset of solitons (upper curves) the roughening exponent 

exhibits two different scaling behaviors revealing a crossover from non-KPZ behavior ( ( - 0.70) for small 

length scales to KPZ behavior ( ( - 0.50) [4]; note that the crossover length appears to be the same. 

It can be appreciated in the top two curves of Fig. 1 that for sufficiently large scales, the coherence ceases 

and a crossover to a zero roughening exponent takes place (see top two curves in Fig. 1). 
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Fig. 3./og tr vs. log L for a = 0.252 and l = 320. 

Figure 2 presents log-log plots of tr(L) as a function of L for different values of the measure of the 

damping a (starting from the bottom t~ equals 25.2, 2.52, 0.252, 0.0252 and 0.0) while the previous size of 

the system is preserved and the variance of the noise is 3,333.33. The lower four cases exhibit good linear fits 

( ~ 0.50 (shown in the Fig. 2). This KPZ-like behavior shifts to intermediate scales of length as the damping is 

decreased, this is, as the solitonic character of the system strengthens. The lower curve corresponds to the 

maximum damping and weaker solitonic character of the model; it exhibits only two roughening exponents (, 

0,5 and zero. The KPZ equation is not a solitonic equation and this is in agreement with the behavior of the 

random sine-Gordon equation for large damping. As the damping is decreased, the system begins to depart from 

the KPZ-like behavior at small scales of length; the second and the third curves from below exhibits good fits 

~ O. 70 (not shown in the Fig. 2) in this range. The upper curve of Fig. 2 corresponds to a random sine-Gordon 

equation without damping (so, this case departs from the Langevin approach); this curve exhibits a linear fit ( -  

1.0 up to/og L = 2 and 5~  0.8 in the range between log L= 2 and log L= 2.5. 

In Figure 3 we present log-log plots of tr(L) as a function of L for the same parameters of the top three 

curves of  Fig. 1 but the size of the system which has been doubled (as well as the number of discretization 

points). The crossover length between the non-KPZ behavior ( (  - 0. 70) for small length scales and the KPZ 

behavior ( ( ~ 0.50) is preserved when the size of the system is increased. By comparison of the lower curve in 

Fig. 1 and Fig, 2, we can appreciate that the ( ~ 0.0 plateau is more sharply defined when the size of the system 

is increased. 

C O N C L U S I O N S  

Summarizing, we have shown quantitatively that the coherence of the ordered state appears to have three 

different regimes with well-def'med crossover lengths. These spatiotemporal regimes ( (  ~ 0. 7, 0.5 and 0.0) 

appear to have different coherent lengths (soliton-like, KPZ-like and none, respectively). 
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