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Three-dimensional rotational Langevin dynamics and the Lebwohl-Lasher model
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We introduce a new scheme for molecular-dynamics simulation of three-dimensional systems exhibiting
rotational motions. The procedure is based on the Langevin dynamics method. Our paper is focused on the
Lebwohl-Lasher model in order to simulate the isotropic-nematic transition of liquid crystals. In contrast to
previous dynamic approximations, our approach allows one to reproduce well the isotropic phase of these
systems.
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The three-dimensional rotational motion of molecu
arises in a variety of problems. Typical examples can
found in colloidal suspensions@1#, ferroelectric fluids@2#,
and nematic liquid crystals@3,4#. Usually these systems in
volve dipolar interactions between molecules as in the c
for example, of the XYZ@5# and the Maier-Saupe@6# model.
For nematic liquid crystals many computational works ha
considered a lattice version of the Maier-Saupe model ca
the Lebwohl-Lasher model@7#, which is described by the
following interaction:

Ui52(
j 51

m

J̄i j P2~ni•nj !52(
j 51

m

Ji j ~ni•nj !
21c, ~1!

wherem is the number of nearest neighbors of the particli,
J̄i j (53Ji j /2) is a positive coupling constant,P2 is the sec-
ond Legendre polynomial,c is a constant, andni
5sinuicosfii1sinuisinfij1cosuik denotes the orientation
vector at the sitei. Usually, Monte Carlo~MC! techniques
are used to bring the system to the equilibrium@7–11#. How-
ever, when one is interested in the relaxation mechanism
the dynamical behavior of the system a molecular-dynam
~MD! technique is required@12–15#. For these kinds of
simulations, one method is based on the Langevin the
namely, the Langevin molecular-dynamics simulations a
called Brownian dynamics@16#. Such a MD method should
be able to reproduce the isotropic-nematic phase trans
and the typical isotropic phase of the liquid-crystal m
ecules observed at high temperature. This phase corresp
to a homogeneously random in orientation of all the m
ecules forming the sample. Within this technique, previo
approaches have failed to describe this phase@14#. To our
knowledge, a MD method able to recover this phase
never been worked out in detail.

In this paper we propose a new method to simulate s
tems described by a dipolar-dipolar interaction by means
Langevin dynamics~LD!. We show that assigning a prope
weight to each angular configuration is nontrivial in repr
ducing the right behavior and has been the source of re
confusion@14#.
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The Langevin equation is used to replace Newton eq
tions when the problem is to simulate the motion of a syst
in contact with a thermal bath. In the noninertial limit, th
one-particle Langevin equation for a system containingN
interacting particles can be written as

z ẋ52
]U

]x
1R~x,t !, ~2!

where ẋ, z, and R(t) are the drift velocity of the particle
moving in the bath, the drag coefficient of the particle, a
the random ~thermal! force, respectively. The function
R(x,t) is an uncorrelated random function~white noise! that
obeys:

^R~x,t !R~x,t8!&52kBTzd~ t2t8!, ~3!

wherekB andT are the Boltzmann constant and the tempe
ture. In practice, for discrete simulations we have

R~x,t !5sl i~ t !, ~4a!

with

s5A2kBTz/dt, ~4b!

wheredt is the time interval andl i(t) is a random number
picked from an uncorrelated random number generator w
a Gaussian distribution centered at zero.

In spherical coordinates the three-dimensional rotatio
motion of molecules is described by the anglesu ~with 0
<u<p) andf ~with 0<f<2p). Traditionally, when using
the Metropolis Monte Carlo algorithm, a new configuratio
is proposed by generating the angles (u,f) for each mol-
ecule using a random number generator with an uniform
tribution in cosu for a given temperature. This procedu
considers the appropriate weights in the generation of
orientational configurations. In the case of the Langevin
namical method, the strategy is not straightforward since
equations of motion contain a deterministic and a rand
term. Recently, this procedure was used by direct subs
tion of x in Eq. ~2! with u andf @14#. As we will see below
this approach fails to reproduce the phase transition and
©2001 The American Physical Society01-1
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expected isotropic phase~the zero polarization phase!. We
considered the following equations of motion:

z
] cosu

]t
52

]U

] cosu
1R~u,t !, ~5a!

and

z
]f

]t
52

]U

]f
1R~f,t !. ~5b!

Differentiating cosu with respect tou, and discretizing the
above equations for a given moleculei one obtains

u i~ t1dt !5u i2
dt

sin2u i

]

]u i
(
j 51

m

Ji j @sinu isinu jcos~f i2f j !

1cosu icosu j #
21

A2tdtl~u i ,t !

sinu i
, ~6a!

and

f i~ t1dt !5f i2dt
]

]f i
(
j 51

m

Ji j @sinu isinu jcos~f i2f j !

1cosu icosu j #
21A2tdtl~f i ,t !, ~6b!

whereu i and f i are the angles at timet, t5kBT/ J̄ is the
reduced temperature, and the time intervaldt is considered

FIG. 1. Order parameter^P2& as a function of the reduced tem

peraturet for different integration step sizesdt ~in units of J̄/z).
The inset shows the dependence of^P2& at the reduced critica
temperaturetc as a function ofdt.
04270
in units of J̄/z. Note that when sinui tends to 0 the Eq.~6a!
becomes singular. In order to circumvent this singularity p
duced by a priviledged system of reference, we rewrite
equations in a referentialR8 where the unit vectori8 is along
ni , while j 8 andk8 are obtained by a simple rotation of th
referentialR defined by the following unitary matrixTi ,

Ti5S sinu icosf i sinu isinf i cosu i

2sinf i cosf i 0

2cosu icosf i 2cosu isinf i sinu i

D . ~7!

Each of the orientation vectorsnj in the neighboring of a site
i can be determined usingnj85Tinj . This procedure allows
us to calculate the anglesu j8 and f j8 . In the referentialR8,
the equations of motion reduce to

u i8~ t1dt !5dtFp

2
2(

j 51

m

Ji j sin 2u j8cosf j81R~u i8 ,t !G
~8a!

and

f i8~ t1dt !5dtF (
j 51

m

Ji j sin 2f j8sin2u j81R~f j8 ,t !G , ~8b!

where the spurious singularity is eliminated. Once the ori
tation at t1dt is calculated in R8, we simply useni

5Ti
21ni8 , (Ti

215Ti
t) to calculate the time evolution in th

referentialR.

FIG. 2. Order parameter^P2&: open and black diamonds corre
spond to results from MC and LD calculations, respectively, w
uniform distributions of cosu andf. Open and gray circles corre
spond to results from MC and LD, respectively, with an unifor
distribution of anglesu andf. For this case, the high-temperatu
limit 0.25 is shown as a dashed line.
1-2
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By taking into account the above procedure, we p
formed our simulations by considering a cubic lattice of s
L3L3L sites. Each site contains a molecule that intera
with its six nearest neighbors. Periodic boundary conditio
are considered at the edge of the box. At the beginning,
molecules are randomly oriented. A quantity of interest is
average order parameter^P2&, which gives an idea of the
polarization of the system, and it is determined as

^P2&5L2dK 1

2 (
i

~3cos2V i21!L , ~9!

whereV i is the angle between the axis of thei th rotor mol-
ecule and the nematic director. Because of the nonbro
continuous symmetry of the orientational ordering, the dir
tion of the nematic director varies and has to be determi
during the simulation in order to calculate^P2&. This is pos-
sible by a diagonalization of the tensor order parameteQ
@3#. Then, the instantaneous value of the order paramete
given by the largest eigenvalue ofQ. In nematic liquid crys-
tals, we should expect that^P2& tends to one at low tempera
ture consistent with the ordered phase observed in these
tems. At high temperaturêP2& should tend to 0, which is
typical of the isotropic~disordered! phase, i.e., the molecule
are homogeneously random in orientation. We compu
^P2& as a function of the reduced temperaturet. The aver-
ages ofP2 were performed for time larger than 25J̄/z in
order to insure that the calculation is done when the sys
reaches its equilibrium. Calculations were done untit

530J̄/z and for sizeL510.
Figure 1 shows the order parameter^P2& as a function of

the reduced temperaturet for different integration step size
dt. As expected̂ P2& tends to 1 and 0 at low and high tem
peratures, respectively. The inset illustrates how^P2& be-
ev

. E
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haves at the critical reduced temperature valuetc

(51.1232@8#! as a function ofdt. Note thatdt51023J̄/z is
small enough to provide reliable results. As expected^P2&
tends to 1 and 0 at low and high temperatures, respectiv

We also performed Monte Carlo calculations for syste
of sizeL510 in order to compare with the results obtain
from the Langevin dynamics simulations. Figure 2 compa
both ^P2& curves, which are depicted by open~MC! and
black ~LD! diamonds. Note that both curves are quite simi
suggesting that our Langevin dynamics approach reco
well the nematic and the isotropic phase of the liquid cr
tals.

Furthermore, we performed MC and LD simulation
when the sampling of states is uniform in (u,f) as in Ref.
@14#, instead of cosu. Figure 2 presents the results. Th
curves depicted by gray circles~LD! and the open circles
~MC! are very similar. It is clear that the high-temperatu

tendency of̂ P2& approaches to12 ( 3
p*0

pcos2xdx21)50.25 in-
stead of 0. In addition, the phase transition is smoother t
with our approach. Thus, our results clearly demonstrate
for reliable results the variable to be considered is cosu in-
stead ofu in the Langevin dynamics equations. This impli
that in Langevin dynamics method, as in the Monte Ca
simulation, the right weight when selecting one of the po
sible configurations for a given temperature, should not
neglected. This is a general result relevant to Langevin
namics ~and other methods involving a random choice
states! in systems where rotational motions exist.

The numerical calculations were done on the compu
of the CINES~France! and CeCalcula~Venezuela!. Discus-
sions with P. Colmenares and J.A. Gonzalez are gratef
acknowledged as is the support from the PCP Venezue
French exchange program.
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