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Three-dimensional rotational Langevin dynamics and the Lebwohl-Lasher model
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We introduce a new scheme for molecular-dynamics simulation of three-dimensional systems exhibiting
rotational motions. The procedure is based on the Langevin dynamics method. Our paper is focused on the
Lebwohl-Lasher model in order to simulate the isotropic-nematic transition of liquid crystals. In contrast to
previous dynamic approximations, our approach allows one to reproduce well the isotropic phase of these
systems.
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The three-dimensional rotational motion of molecules The Langevin equation is used to replace Newton equa-
arises in a variety of problems. Typical examples can bdions when the problem is to simulate the motion of a system
found in colloidal suspensiongl], ferroelectric fluids[2], in contact with a thermal bath. In the noninertial limit, the
and nematic liquid crystalg3,4]. Usually these systems in- one-particle Langevin equation for a system containig
volve dipolar interactions between molecules as in the caseénteracting particles can be written as
for example, of the XYZ5] and the Maier-Saupé] model.

For nematic liquid crystals many computational works have [x=— ﬁJr R(X,1) @
considered a lattice version of the Maier-Saupe model called O ox Y
the Lebwohl-Lasher moddl7], which is described by the _
following interaction: wherex, ¢, and R(t) are the drift velocity of the particle
moving in the bath, the drag coefficient of the particle, and
m m the random (therma) force, respectively. The function
- R(x,t) is an uncorrelated random functiéwhite noise that
Ui:_E Jijpz(ni'nj):_z Jij(ni'nj)2+c, (1) ( ) m e
=1 =1 obeys:
(R(X,1)R(x,t"))=2kgTZS(t—t"), (3

wherem s the number of nearest neighbors of the particle
Jij(=3J;;/2) is a positive coupling constar®, is the sec-
ond Legendre polynomial,c is a constant, andn;
=sin #,cosg;i+ sin gsin ¢j +cosék denotes the orientation R(X,t)= o\ (1), (43
vector at the site. Usually, Monte CarloMC) techniques
are used to bring the system to the equilibrilifa 11]. How-  with
ever, when one is interested in the relaxation mechanism or
the dynamical behavior of the system a molecular-dynamics o=2kgT{/ 6, (4b)
(MD) technique is required12—15. For these kinds of
simulations, one method is based on the Langevin theorywhereét is the time interval and(t) is a random number,
namely, the Langevin molecular-dynamics simulations alsgicked from an uncorrelated random number generator with
called Brownian dynamicgl6]. Such a MD method should a Gaussian distribution centered at zero.
be able to reproduce the isotropic-nematic phase transition In spherical coordinates the three-dimensional rotational
and the typical isotropic phase of the liquid-crystal mol-motion of molecules is described by the angteswith 0
ecules observed at high temperature. This phase correspondg)=< ) and¢ (with 0= ¢=<2). Traditionally, when using
to a homogeneously random in orientation of all the mol-the Metropolis Monte Carlo algorithm, a new configuration
ecules forming the sample. Within this technique, previouds proposed by generating the angles ) for each mol-
approaches have failed to describe this pHdsg. To our  ecule using a random number generator with an uniform dis-
knowledge, a MD method able to recover this phase ha#ibution in cosé for a given temperature. This procedure
never been worked out in detail. considers the appropriate weights in the generation of the
In this paper we propose a new method to simulate syserientational configurations. In the case of the Langevin dy-
tems described by a dipolar-dipolar interaction by means ofiamical method, the strategy is not straightforward since the
Langevin dynamicgLD). We show that assigning a proper equations of motion contain a deterministic and a random
weight to each angular configuration is nontrivial in repro-term. Recently, this procedure was used by direct substitu-
ducing the right behavior and has been the source of recetibn of x in Eq. (2) with # and ¢ [14]. As we will see below
confusion[14]. this approach fails to reproduce the phase transition and the

wherekg andT are the Boltzmann constant and the tempera-
ture. In practice, for discrete simulations we have

1063-651X/2001/6@}/0427013)/$20.00 63042701-1 ©2001 The American Physical Society



BRIEF REPORTS

0.8

0.6

<P,>

0.4

0.2

FIG. 1. Order paramet€iP,) as a function of the reduced tem-
peraturer for different integration step sizedt (in units of J/{).
The inset shows the dependence(&%,) at the reduced critical
temperaturer, as a function ofét.

expected isotropic phasghe zero polarization phaseWe
considered the following equations of motion:

0 cosd _ oU
ot acose+R(0’t)’ (53
and
ap U
55——£+R(¢,t)- (5b)

Differentiating cos with respect tod, and discretizing the
above equations for a given moleculene obtains

m

ot o . .
0,(t+6t)=6,— ma_e-,; J;j[sin6;sin 6;cos ¢ — ;)
\/27’&)\(@ ,t)
+c0s6;cos6;]°+ —sne (6a)
and
0 < o
di(t+ot)=¢;— &(9_%21 Jij[sin@;sin6;coq ¢; — ¢;)
+c0s6;,c0s6; 1%+ V278N (¢ 1), (6b)

where 6; and ¢, are the angles at timg 7= kBT/J_ is the
reduced temperature, and the time inter§glis considered
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FIG. 2. Order parametéiP,): open and black diamonds corre-
spond to results from MC and LD calculations, respectively, with
uniform distributions of co® and ¢. Open and gray circles corre-
spond to results from MC and LD, respectively, with an uniform
distribution of angle® and ¢. For this case, the high-temperature
limit 0.25 is shown as a dashed line.

in units of J/Z. Note that when si@ tends to 0 the Eq(6a)

becomes singular. In order to circumvent this singularity pro-
duced by a priviledged system of reference, we rewrite the
equations in a referenti®d’ where the unit vector is along

n;, while j’ andk’ are obtained by a simple rotation of the
referentialR defined by the following unitary matriX; ,

Sin 6,CoS¢; sinég;sing; oS,
T,= —sing; COSd; 0 )
—C0S#;C0S¢; —cCosh;sing; Sinb
Each of the orientation vectorg in the neighboring of a site
i can be determined usir‘rq=Tinj . This procedure allows

us to calculate the angley and ¢ . In the referentiaR’,
the equations of motion reduce to

o m
0! (t+ 8)= ot 5_2 Jijsin 20/ cosp/ +R(6] ,t)
=1
(8a)
and

m

¢il(t+5t):5t{zl Jijsin 2¢sinf 6 + R(¢] 1) |, (8b)
“

where the spurious singularity is eliminated. Once the orien-
tation att+ 4t is calculated inR’, we simply usen;
=T, ™/, (T, =T} to calculate the time evolution in the
referentialR.
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By taking into account the above procedure, we perhaves at the critical reduced temperature valgg
formed our simulations by considering a cubic lattice of size — 1 1232[8]) as a function oft. Note thatst=10"3J/¢ is

LXLXL sites. Each site contains a molecule that interactgy4| enough to provide reliable results. As expedtBd)

with its six nearest neighbors. Periodic boundary condition$ends to 1 and 0 at low and high temperatures, respectively.

are considered at the edgg of the box. At. the pegmmn_g, the We also performed Monte Carlo calculations for systems
molecules are randomly oriented. A quantity of interest is the

average order parametéP,), which gives an idea of the of sizeL=10 in order to compare with the results obtained
g€ P 2/, Which g ; from the Langevin dynamics simulations. Figure 2 compares
polarization of the system, and it is determined as

both (P,) curves, which are depicted by opéMC) and

> black (LD) diamonds. Note that both curves are quite similar

(Pyy=L"d 32 (3c0og0,—1)

2 4 C) suggesting that our Langevin dynamics approach recovers

well the nematic and the isotropic phase of the liquid crys-
where(); is the angle between the axis of tté rotor mol-  tals.
ecule and the nematic director. Because of the nonbroken Furthermore, we performed MC and LD simulations
continuous symmetry of the orientational ordering, the direcwhen the sampling of states is uniform ifi, () as in Ref.
tion of the nematic director varies and has to be determinetil4], instead of co®. Figure 2 presents the results. The
during the simulation in order to calculat®,). This is pos- ~ curves depicted by gray circlgéD) and the open circles
sible by a diagonalization of the tensor order paramé&er (MC) are very similar. It is clear that the high-temperature
[3]. Then, the instantaneous value of the order parameter igndency of(P,) approaches tg (2/Zcogxdx—1)=0.25 in-
given by the largest eigenvalue Qf In nematic liquid crys-  stead of 0. In addition, the phase transition is smoother than
tals, we should expect th@P,) tends to one at low tempera- with our approach. Thus, our results clearly demonstrate that
ture consistent with the ordered phase observed in these syfr reliable results the variable to be considered is &uos
tems. At high temperaturéP,) should tend to 0, which is stead off in the Langevin dynamics equations. This implies
typical of the isotropiddisordered phase, i.e., the molecules that in Langevin dynamics method, as in the Monte Carlo
are homogeneously random in orientation. We computedimulation, the right weight when selecting one of the pos-
(P2) as a function of the reduced temperatuteThe aver-  sible configurations for a given temperature, should not be
ages ofP, were performed for time larger than 2% in neglected. This is a general result relevant to Langevin dy-
order to insure that the calculation is done when the systernamics (and other methods involving a random choice of
reaches its equilibrium. Calculations were done until state$in systems where rotational motions exist.

=30J/¢ and for sizeL =10. The numerical calculations were done on the computers
Figure 1 shows the order parametér,) as a function of of the CINES(France and CeCalculdVenezuela Discus-

the reduced temperaturefor different integration step sizes sions with P. Colmenares and J.A. Gonzalez are gratefully

St. As expected P,) tends to 1 and 0 at low and high tem- acknowledged as is the support from the PCP Venezuelan-

peratures, respectively. The inset illustrates hd®y) be-  French exchange program.
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