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The influence of correlated impurities on the critical behavior of the three-dimensional �3D� Ising model is
studied using Monte Carlo simulations. Spins are confined into the pores of simulated aerogels �diffusion-
limited cluster-cluster aggregation� in order to study the effect of quenched disorder on the critical behavior of
this magnetic system. Finite-size scaling is used to estimate critical couplings and exponents. Long-range
correlated disorder does not affect the critical behavior. Asymptotic exponents differ from those of the pure 3D
Ising model, but it is impossible, with our precision, to distinguish them from the randomly diluted Ising
model.
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I. INTRODUCTION

The influence of quenched disorder on phase transitions
has been studied for a long time now. In 1974, Harris1 estab-
lished this famous criterion: uncorrelated disorder is not rel-
evant, for a second-order phase transition, if the specific heat
exponent is negative ���0�. The criterion was generalized
by Weinrib and Halperin2 �WH� for any disorder distribution
whose correlation function exhibits a power-law tail—i.e.,
g�r��r−a as r→�. Disorder is shown to be relevant in these
cases:

d� − 2 � 0 if a � d , �1�

a� − 2 � 0 if a � d , �2�

d being the dimension and � the correlation length exponent
of the pure system. After Josephson hyperscaling �2−d�
=�� the Harris criterion is recovered in the short-range cor-
related �SRC� regime �1�. In contrast, the long-range corre-
lated �LRC� regime extends the criterion to systems satisfy-
ing condition �2�, even if ��0. This generalization explains
why critical exponents for the superfluid �SF� transition of
4He change when the fluid is confined in very light
aerogels3,4 and do not when confined in, for example, porous
gold.5 Aerogels are fractal for several length scales,6 while
porous gold has exponentially decaying correlations beyond
the size of a typical pore.5 Nevertheless, the authors3,4 argued
that the critical behavior of SF 4He in aerogels yet poses
intriguing questions to be solved.

For instance, light aerogels are fractal for several length
scales, up to a certain value � that depends on aerogel den-
sity. Beyond this length, the disordered structure becomes
homogeneous, entering an uncorrelated regime. After the
Harris criterion, as the SF correlation length � gets larger
than �, disorder should become irrelevant, because ��
−0.011 is negative for this system. Yoon et al.4 estimated that
this crossover should appear at t= �T−Tc � /Tc�10−4 but, al-
though they approached Tc as close as t�10−5, no crossover
to bulk exponents was observed. A different universality
class was evident for the SF transition of 4He, when confined
in aerogels. An explanation to these changes was given using

Monte Carlo �MC� simulations of the three-dimensional �3D�
XY model, confined in aerogel-like structures.7 The SF tran-
sition belongs to the 3D XY universality class, and correlated
disorder could be relevant provided that the WH condition
�2� at r→� is fulfilled. Vásquez et al.7,8 showed that changes
occur because of hidden LRC, inherent to the process of
aerogel formation. Using simulated aerogels, made by
diffusion-limited cluster-cluster aggregation9,10 �DLCA�, the
authors showed that different LRC subsets are physically
well defined within the whole aerogel structure. Specifically,
gelling clusters �to be defined later in this paper� are shown
to be the relevant structures defining the critical behavior of
the 3D XY model in DLCA aerogels.7

In this paper, we study the three-dimensional Ising �3DIS�
model, in the presence of such aerogel-like structures. The
pure 3DIS model has a positive specific heat exponent ��
�0.11�, so any type of disorder, correlated or not, will be
relevant. If Ising spins are collocated in the pores of aerogels,
criticality will be affected by LRC as well as by SRC disor-
der. Our main purpose is to elucidate which among these
effects dominates the critical behavior of the 3DIS model in
this case. Along this paper, we report the results of extensive
MC simulations of the 3DIS model in the pores of DLCA
aerogels at fixed porosity 	=80%, in order to clarify this
point.

The rest of this paper is organized as follows: Section II is
a brief review about diluted Ising systems studied in the past.
Section III explains the model first, then the simulation pro-
cedure in detail, with a preamble on self-averaging, in order
to validate our procedure; two methods to obtain accurate
values of the critical coupling are presented at the end. Ther-
mal and magnetic effective exponents are presented, and
their asymptotic behaviors are discussed in Sec. IV. Finally,
Sec. V presents some concluding remarks.

II. ANTECEDENTS OF THE DILUTED 3DIS MODEL

Many experimental, theoretical, and computational works
have been done to date in order to study the critical behavior
of the 3DIS model in the presence of quenched disorder.
Most numerical and theoretical works address the random-
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diluted 3DIS �RDIS� model—i.e., the Ising model in the
presence noncorrelated distributions of impurities.11–15

Apart, concerning disordered LRC structures, Ballesteros
and Parisi16 simulated the 3DIS model, with dislocations rep-
resented by lines of impurities generated at random. Corre-
lations for this type of disorder decay with an exponent a
=2. They obtain a correlation length exponent �LRC�1 for
the impure system, thus confirming the result of WH, that
this exponent should be2 �LRC=2/a. Marqués et al.17 also
simulated a diluted 3DIS model, but with spins located on
LRC sites. These sites were provided by a previous simula-
tion of the pure 3DIS model; taking all sites from the cluster
of dominating spin orientation at Tc, these are then occupied
by the interacting Ising spins to simulate. Clusters for this
thermally diluted Ising system have anomalous dimension

pure�0.03, which gives a=2−
pure�1.97. They obtain an
exponent �LRC�1, also in agreement with the WH expres-
sion. In both cases, LRC disorder is relevant for criticality.
Nevertheless, this particular result from WH has proven re-
cently not to be correct at more accurate approximations.
Using two-loop expansions, Prudnikov et al.18 showed that
the exponent �LRC depends on both the internal dimension of
the order parameter m and the exponent a, not the case in
WH’s conjecture, independent of m. For both systems, the
production of Prudnikovs’ et al. yields �LRC�0.72�1.

Experiments about the critical point of the liquid-vapor
�LV� transition of 4He and N2, confined in 95% porous
aerogels,19,20 concern directly the problem we are addressing
in this paper. Bulk 4He near its LV critical point belongs to
the 3DIS universality class, and aerogel-like disorder has
proven to contain both LRC and SRC disordered
structures.7,21 Wong et al.19,20 report, for the order parameter,
exponents �=0.28�5� and 0.35�5�, respectively, consistent
with that calculated for the pure 3DIS model by Guida and
Zinn-Justin22 �=0.326�3�. However, in the same experi-
ments, the specific heat curves present finite peaks at Tc,
characteristic of a negative exponent �, definitely different
from the corresponding �pure�0.11 for the pure 3DIS model.
Actually, within error bars, results for � are also consistent
with the corresponding RDIS value,23 �=0.355�5�. After
these experimental results one may take noncorrelated SRC
instead of LRC disorder within aerogels to be the relevant
one for the critical behavior of the 3DIS model in aerogel
pores.8

Renormalization group �RG� calculations for the 3DIS
with weak amounts of disorder show that a new universality
class appears, different from that of the pure 3DIS,12,13,24–28

and consistent with Harris criterion. Since Landau,29 using
MC simulations, concluded that the exponents for the 3DIS
model with random impurities differ from those of the pure
system, different works stated that the exponents depend on
the concentration of impurities, until 1990, when Heuer30,31

began to clarify that differences with RG calculations are due
to the fact that exponents obtained from simulations were
basically effective ones, and not the asymptotic ones.

Ballesteros et al.,23 using a p-reweighting method in MC
simulations, found the exponents for the RDIS universality
class to be independent of the concentration of impurities p.
This was confirmed for the random bond Ising model in d
=3 by Berche et al.,32 looking at finite-size scaling for the

critical temperature. All those calculations motivated further
MC and RG studies about the crossover between the effec-
tive and really asymptotic critical behavior.15,28,32

Definitive evidence of a new universality class was ob-
tained using neutron scattering in the antiferromagnets
Mn1−xZnxF2 �Ref. 33� and FexZn1−xF2 �Ref. 34�. For the first
system, the exponents �=0.70�2� and �=1.37�4� are ob-
tained, while �=0.69�2� and �=1.31�3� are the results for
the second one. These results clearly differ from bulk expo-
nents; see, for instance, those calculated by Guida and
Zinn-Justin:22 �=0.6304�13� and �=1.239�5�.

The critical behavior of magnetic systems confined in
aerogel-like structures may be subject to competing LRC and
SRC influences. The 3D XY model in the pores of DLCA
aerogels, for instance, presents new exponents due only to
the presence of gelling clusters, which are LRC, while the
SRC components are irrelevant to the transition.7 However,
for the Ising model under the same kind of confinement, two
different effects may be present. Simulations under strictly
LRC types of disorder,16,17 give exponents consistent with
the result of Weinrib and Halperin. On the other hand, ex-
perimental results about the critical point of LV transitions in
aerogels19,20 point to the relevance of the uncorrelated part of
disorder.

III. MODEL AND SIMULATION PROCEDURE

The 3DIS model in the presence of impurities, on a
simple cubic lattice with nearest-neighbor interaction, is de-
scribed by the Hamiltonian

�H = −
J

kBT
�
�ij	

i jsisj , �3�

where s= ±1 are the spin variables, kB is the Boltzmann con-
stant, and J is the coupling. In what follows, kB=1 and T
=1. The sets 
i� represent quenched variables chosen to be 0
if the site is an impurity and 1 if the site is occupied by an
Ising spin. These sets of impurities are taken randomly
�RDIS model� or from DLCA aerogels �AEIS model�.

A. Disorder generation and MC simulations

At the beginning, sites are occupied by a uniform random
distribution of N particles, so their volume fraction is c
=N /L3. To simulate the RDIS model, this initial distribution
of disorder is held through the rest of the MC simulation.

Instead, for AEIS simulations to take place, aerogels are
generated through the on-lattice DLCA algorithm9,10 with pe-
riodic boundary conditions �PBC’s�. Monomers and clusters
diffuse randomly with diffusivity constants D which depend
on their mass n through D�n−1/df. The fractal dimension df
has been taken equal to its value in three dimensions,35 df
�1.8. They stick irreversibly when they come in contact,
and then the process follows up until a single cluster is ob-
tained. This model is known to reproduce well the geometric
features of real aerogels.36

At a given stage in this DLCA process, the first aggregate
to reach opposite sides of the simulation box in any direction
is called the gelling cluster �GC�. It has been shown7,21 that
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the correlation function for this GC is algebraic up to a cut-
off, which diverges as L→�. In other words, these objects
are fractal �LRC�. Right after the GC is built, many other
smaller clusters �islands� continue to diffuse and finally at-
tach themselves to the GC at random sites. The resulting
DLCA cluster �GC with islands� becomes homogeneous at a
very small cutoff, in spite of the existence of a physically
well-defined fractal structure, the GC. This cutoff increases
as the concentration decreases, a feature already observed for
real silica aerogels.6 At the volume fraction employed in the
present work, c=0.2, the cutoff is so small �a few lattice
constants� that DLCA clusters must be considered as non-
fractals. Thus, the presence of islands, which represent the
SRC subset within the whole DLCA cluster, actually hide the
LRC behavior of gelling clusters. It is in this sense that
aerogel-like structures must be considered as a mixture of
LRC and SRC disorder distributions.

Disordered samples are generated by the procedures de-
scribed above. A MC simulation is performed for each
sample of interacting 3DIS spins, placed at empty sites left
by impurities. Physical observables, denoted by O, are cal-
culated at each independent MC step, and then correspond-
ing ensemble �thermal� averages �O	 are taken over the MC
time series. The Wolff algorithm37 is used to update spins. In
disordered systems, this algorithm tends to prevent some re-
gions from being visited by growing Wolff clusters. If the
concentration of impurities is small, this problem can be
solved by adding some Metropolis updates along the simu-
lation process.23 We chose this method and include some
Metropolis sweeps to shake all spins, after a fixed number of
Wolff steps. An independent step is taken after one correla-
tion time �, which has been estimated from preliminary
simulations. After enough steps for thermalization, a fixed
number �NT=1000� of independent MC steps are performed
to calculate thermal averages. Equivalent simulations take
place for NS=2000 different samples and, finally, averages
over disorder are taken O= ��O	 �denoted by square brack-
ets�. System sizes are L=8,12,16,24,32,48,64,96 for
the RDIS model and L=8,12,16,24,28,32,40,48,56,
64,80,96 for the AEIS model.

B. Measured observables

The magnetization �order parameter� is calculated by

M =
1

N
�

i

L3

isi, �4�

where N=cL3 is the total number of spins. Thermal averages
�M	 are taken, and averages over disorder, M�J�
= ��M	�J�, are then calculated after the former have been
extrapolated by reweighting.39 The procedure is described
below in detail. In terms of the magnetization, we define the
susceptibility as

� = JL3��M2	 − �M	2 . �5�

The energy is correspondingly defined by

E = − J�
�ij	

i jsisj, E = ��E	 , �6�

and then the specific heat is obtained from fluctuations of the
energy:

ch = L−3��E2	 − �E	2 . �7�

Logarithmic derivatives of nth moments Mn of the mag-
netization �n=1,2 ,4�, with respect to the coupling, are cal-
culated through the energy-magnetization covariance:

� � ln�Mn	
�J

� = − � �MnE	 − �E	�Mn	
�Mn	 � . �8�

C. Simulation temperatures and reweighting

Vásquez et al.7 found the phase diagram for the 3D XY
model in the pores of DLCA aerogels. They obtained
Tc�c� /Tc�0�=Jc�0� /Jc�c� as a function of the concentration of
impurities c, being Jc�c� the 3D XY critical coupling at vol-
ume fraction c of the aerogel. The shape of this phase dia-
gram comes basically from the porous structure of disorder,
especially at low concentrations. Using this information and
the critical coupling Jc�0�=0.221 659 5�26� for the pure
3DIS model,38 Vásquez8 made a rough estimate for the criti-
cal coupling for the 3DIS model in the pores of DLCA aero-
gels at c=0.2. Making simulations at this rough estimate and
using lattice sizes L=10–80 and finite-size scaling, the value
Jc�0.2�=0.258 55�3� is obtained for the critical coupling. Al-
though for those simulations the number of disorder realiza-
tions is low �NS=30�, they obtain critical exponents close
enough to those reported for the RDIS model.

In the present work, all simulations were done at c=0.2,

using simulation temperatures Jc
˜=0.285 745 for the RDIS

model �following Calabrese et al.15�, and at the above esti-

mate Jc
˜=0.258 55 for the AEIS model. Physical quantities at

J�Jc
˜ are obtained by the reweighting method introduced by

Ferrenberg and Swendsen.39 This procedure was used for
each disorder realization at each system size L. Each thermo-
dynamic quantity was then averaged over disorder for each J
within the extrapolation interval. Finally, maxima of
���J ,L�, �c�J ,L� and �� ln�Mn	 /�J�J ,L� were obtained
from averaged curves, with their corresponding pseudocriti-
cal couplings Jc

*�L�.

D. Disorder sampling and self-averaging

This part is dedicated to determine a suitable number NS
of disorder realizations to obtain critical exponents for the
AEIS model at enough accuracy. A complete study of prob-
ability distributions for different thermodynamic quantities is
performed and results compared with the corresponding ones
for the RDIS model to decide NS. As an example, in Fig. 1
we depict critical susceptibility points, obtained for corre-
sponding disorder samples in the RDIS �left� and AEIS
�right� cases �both at c=0.2�. Points come from simulations

at the couplings Jc
˜ estimated above, using the largest lattice

sizes �L=96�. This distribution looks sharper in the AEIS
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case and notably more symmetric respect to the average than
in the RDIS case. The top of Fig. 2 shows the probability
distribution for the susceptibility in both cases.

As remarked, the distribution for the AEIS model �solid
circles� is sharper and more symmetric than the distribution
for the RDIS model �open squares�. Note that, in terms of the

normalized variable x=�i / ��, the maximum of the distribu-
tion for AEIS is closer to the average x=1 than for the RDIS
model. The bottom of Fig. 2 shows the probability distribu-
tion of susceptibility for different lattice sizes. The indepen-
dence of the width of distributions from L is clear, typical for
systems lacking self-averaging, which is the expected behav-
ior of thermodynamic quantities for any disordered system at
criticality.41

Self-averaging can be quantitatively checked by the nor-
malized squared width40 RA:

RA�L� =
�A2�L� − �A�L�2

�A�L�2 , �9�

A being any given thermodynamic quantity. In this paper,
RA�L� was estimated for the RDIS model to compare with
previously reported values. We obtain, as L→�, RM
→0.054 for the magnetization and R�→0.016 for the sus-
ceptibility, both in agreement with previous results.42 The
ratio here obtained, RM /R��3.4, disagrees with RG predic-
tions: Aharony and Harris43 obtained, using =4−d expan-
sions, that the leading term is RM /R�=1/4. The discrepancy
may come from higher-order terms in the expansion, and not
from the definition of the susceptibility as was suggested by
Berche et al.32 Note also that, in the present work, the defi-
nition for the susceptibility, �=JL3��M2	− �M	2, differs
from that used by Wiseman and Domany,42 �=JL3��M2	.

Results for RA�L�, plotted versus L−1, in the AEIS case,
are shown in Fig. 3, A being the order parameter M, � the
susceptibility, ch the specific heat, and E the energy, respec-
tively. As observed for M, �, and ch �top�, RA tends to non-
zero values as L→�, though asymptotic limits for RA are
smaller for the AEIS than for the RDIS model, as expected
�RM →0.020 and R�→0.0028, as L→��. The power-law be-
havior RE�L−x has been depicted for the energy �bottom�,
the fitting exponent being x�2.58. Thus, the energy is
weakly self-averaged41 �x�d�. The same type of behavior is
obtained, in this work, for the energy in the RDIS case, in
agreement with previously reported results.41 According to
these analyses, the number NS of disorder realizations, suit-
able to estimate critical exponents, is larger for the RDIS
than for the AEIS model. In the next section, we report some
values for the effective critical exponents for both models.
Our results for the RDIS model agree well with previously
published results;42 thus, the same number of realizations for
the AEIS model will be enough to estimate critical expo-
nents, as the values of the normalized squared widths RA are
substantially lower than those obtained for the RDIS model.

E. Critical couplings

We use two methods to estimate the critical coupling out
of our present simulations. The Binder magnetization fourth
cumulant

U4 = 1 −
�M	4

3�M2	2 �10�

is universal—i.e., independent of the system size45 at the
critical point. Thus, the critical coupling Jc can be obtained

FIG. 1. �Color online� Distribution of the susceptibility for the
RDIS �left� and AEIS �right� types of disorder, at a concentration of
impurities c=0.2 and lattice size L=96. Simulations were per-

formed at Jc
˜=0.285745 �Ref. 15� for the RDIS model and at Jc

˜

=0.25855 for the AEIS model. Running averages over the samples
��i are shown by black thick solid lines.

FIG. 2. �Color online� Probability distribution of the normalized
susceptibility x=�i / ��. �Top� Distribution for the AEIS looks
sharper and more symmetrical than that for the RDIS model �data
taken from Fig. 1�. �Bottom� Distributions at different lattice sizes
for simulations of the AEIS model. The distribution width appears
independent of the lattice size.
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with high accuracy at the point where the U4-J plots coincide
for all system sizes L. Figure 4 shows these plots for the
largest system sizes, for the RDIS �top� and AEIS �bottom�
models. In both cases, the coupling used in the simulations
has been marked by a vertical dashed line. For the RDIS
case, taking the curves for the two largest sizes �L=64,96�,
we obtain an estimate �circle� Jc

RDIS=0.285 747 1�11� for the
critical coupling, which agrees well with that of Calabrese et
al.,15 Jc

RDIS=0.285 744 7�24�. In the AEIS case, we depict the
same plots for lattice sizes L=56–96. The intersection for
L=80,96 �circle� gives the critical coupling Jc

AEIS

=0.258 575�10�, close to the value used in the simulations,
Jc

AEIS=0.258 55 ��Jc /Jc�10−4�.
On the other hand, following the finite-size scaling �FSS�

theory,45 deviations of pseudocritical couplings Jc
*�L� from

the critical coupling Jc scale as

Jc
*�L� − Jc � L−1/�, �11�

where Jc
*�L� is defined as the positions of maxima for a given

critical quantity, being Jc�Jc
*�L→ � �. For instance, values

Jc
*�L� for the susceptibility �7� and logarithmic derivatives

�8�, obtained from reweighted curves, are depicted in Fig. 5
as functions of L−1/�, where the rough value 1/��1.4 has
been estimated through nonlinear fits of points corresponding

to L=56–96. As expected, the linear behavior �11� is ob-
served and the lines cross the L→� axis at an average point
Jc=0.258 570�13�, quite close to the value estimated above,
using the intersection of Binder fourth cumulants.

FIG. 3. �Color online� Normalized squared widths RA versus
inverse system size L−1 for the AEIS model at criticality. �Top�
Asymptotic nonzero values for RA as L→�, for the magnetization
�M�, the susceptibility ���, and the specific heat �ch�, evidence the
lack of self-averaging in these quantities. �Bottom� The power-law
behavior RE�L−x, with a fitting exponent x�2.58�d, indicates
that the energy �E� is weakly self-averaged.

FIG. 4. Binder magnetization fourth cumulant as a function of J
for the RDIS �top� and the AEIS �bottom� models, using the largest

L. Dashed vertical lines indicate couplings Jc
˜ used in simulations;

open circles are intersections between curves at the two largest
sizes. In the AEIS case, Jc from this intersection and the previous

estimate Jc
˜ differ by �Jc /Jc�10−4.

FIG. 5. �Color online� Position of the maxima Jc
* for the suscep-

tibility and logarithmic derivatives of Mn �n=1,2 ,4�, plotted versus
L−1/� using 1/�=1.4. Linear fits average at J=0.258570�13� in the
thermodynamic limit �L→ � �.
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IV. EFFECTIVE EXPONENTS

A. Correlation length exponent

Finite-size scaling44 has been used to estimate effective
critical exponents for the RDIS and AEIS cases. This method
allows us estimate the critical exponents � /�, � /�, and � /�
and the correlation length inverse exponent 1 /�. The latter
has already been roughly estimated above, using the scaling
law for the position of the maxima of logarithmic derivatives
of the magnetization moments,38 �Mn	 �n=1,2 ,4�, and the
susceptibility. More accurate estimations are made directly

taking averages over disorder on quantities obtained at Jc
˜

=0.258 55, used in our extensive simulations, which is close
to the previously estimated Jc:

� � ln�Mn	
�J

�
J=Jc

˜

� L1/�. �12�

We look first to this exponent in order to determine the effect
of disorder on the critical behavior of the 3DIS model. Pre-
vious works32 report that the exponents � /� and � /� for the
RDIS model are almost the same as those for the pure 3DIS
model, and as shown later, this is the case for the AEIS
model.

Logarithmic derivatives of moments n=1,2 ,4 of the
magnetization are plotted, versus system size L, in Fig. 6 for
the AEIS case. Points were obtained from averages over dis-

order at the simulation coupling Jc
˜=0.258 55 which is quite

close to Jc, as estimated above. Dashed lines are power-law
fits to Eq. �12� using the four largest system sizes �L
=56–96� and give a FSS exponent 1 /�=1.501±0.007 for the
AEIS model. We recall that exponents determined by this
method are effective exponents and only their asymptotic

behavior would give a hint as to what the universal critical
exponent tends to. This study is addressed in the next para-
graphs.

Effective exponents �1/��eff are depicted in Fig. 7 as cal-
culated from FSS of logarithmic derivatives in both cases,
RDIS and AEIS. As in Fig. 6, values were obtained from

averages over disorder at the simulated couplings Jc
˜�Jc,

being Jc
˜=0.285 745 for the former and Jc

˜=0.258 55 for the
latter, as stated above. Each value �1/��eff is then obtained
from power-law fits to the FSS expression �12�, taking four
consecutive points whose maximum size is L=Lmax. Results
for the RDIS �open circles� yield �1/��eff=1.478�5� at Lmax

=96. A rough estimate of the asymptote 1/� is obtained by
extrapolating these points to the Lmax

−1 →0 axis, as seen in
Fig. 7 �dotted line�. The extrapolation yields 1/��1.464,
well in agreement with previously reported results for the
RDIS model.15 Results for the AEIS model �solid squares�
give �1/��eff=1.501�7� at Lmax=96. Effective exponents in
this case clearly depart from values corresponding to the
LRC fixed point,18 through a region close but above the SRC
fixed point at Lmax�48. However, at larger lattice sizes,
greater values suggest that a another fixed point may rule the
critical behavior at the thermodynamic limit.

For the stable uncorrelated �SRC� disorder fixed point, the
theory1 predicts that the exponent 1 /� should be smaller than
3/2. Additionally, the WH condition2 �2� is well satisfied for
this AEIS model, where � is the pure 3DIS exponent and a
=2�d−df� comes from LRC of GC’s within DLCA aerogels.7

FIG. 6. Logarithmic derivatives �� ln�Mn	 /�J �n=1,2 ,4� ver-
sus L. Points are averages over disorder taken from our simulations

at the estimate Jc
˜=0.25855 for the AEIS model. Power-law fits

�dashed lines� out of the four largest lattice sizes L=56–96 give a
FSS exponent 1 /�=1.501±0.007.

FIG. 7. �Color online� Effective correlation length inverse expo-
nent �1/��eff versus 1/Lmax, obtained by the FSS power-law fit �12�
of four consecutive points ending at Lmax. Values for the RDIS
�open circles�, extrapolated to Lmax→� �dotted line�, approach the
result by Calabrese et al. �Ref. 15�. In the AEIS case �solid squares�,
points clearly depart from the LRC fixed point through a region
close but above the SRC fixed point. Averages over disorder on less
extensive simulations of the AEIS at the critical coupling Jc

=0.258570 give �1/��eff�1.493 �diamond�. The value �1/��eff

�1.497 �triangle� is obtained from averaged reweighted curves at
Jc=0.258570.
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In effect, the fractal dimension for the GC’s within aerogels
at c=0.2 is df �2.2, as reported elsewhere.7,8 This condition,
together with theoretical predictions reported by Prudnikov
et al.,18 would give 1/��1.4 for the 3DIS model with LRC
defects, at the corresponding a�1.6. From Fig. 7 it is clear
that �1/��eff is far above this value. Thus, it is not the LRC
subset of disorder �the GC’s� which rules the critical behav-
ior of the AEIS model, in the way it certainly does for 3D XY
universality class in aerogels.7

The exponent �1/��eff at Lmax=96 was also obtained tak-
ing averages of logarithmic derivatives from average re-
weighted curves, at the critical coupling estimated above
�Sec. III E�, Jc=0.258 570. For L=56–96 we obtain
�1/��eff�1.497 �triangle, Fig. 7�. In addition, less extensive
additional realizations of the AEIS model also for L
=56–96 �600 for each size� were made at this more accurate
value Jc=0.258 570 and averages over disorder were taken
directly from simulations. The power-law fit for these points
gives an estimate �1/��eff�1.493 �diamond�. Although these
effective exponents are lower than 3/2, there exists yet not
enough evidence in this work that the RDIS fixed point
would be reached at Lmax→�.

B. Specific heat and energy exponents

To check our results about the correlation length exponent
for the AEIS, we study the FSS of the specific heat and the

energy, at the simulation coupling Jc
˜.

The top of Fig. 8 shows the specific heat ch plotted versus
L using a linear-log scale. The dashed line is a logarithmic fit
using the four largest lattice sizes 56–96. This result suggests
that the singularity of the specific heat could be logarithmic,
consistent with our result 1 /��1.5 for Lmax=96. After the
Josephson hyperscaling relation ��=2−d�� a specific heat
exponent ��0 would be expected. The bottom of Fig. 8
shows the linear dependence of the energy E on L��−1�/�,
taking �=2/3 and �=0, which confirms the results stated
above. We made an additional analysis of the specific heat
data, and the energy as well, using the scaling of both quan-
tities in the case � /��0. This method was performed by
Schultka and Manousakis in determining the �negative, very
small� exponent � /� for the pure 3D XY model.46 In the case
� /��0, the specific heat scales as ch=c�+c1L�/�, while the
energy scales as E=E�+E1L��−1�/�. Nonlinear fits to these
expressions, using the six largest lattice sizes 40–96, give the
self-consistent results � /��−0.022 and ��−1� /��−1.512,
in agreement with a correlation length exponent 1 /��1.49.
This result agrees with the tendency shown by the effective
values in Fig. 7. Experiments on the critical point of the LV
transition of 4He in aerogels19 report a cusplike peak in the
specific heat, but the authors do not report an estimate for the
exponent �. Our results point for the largest lattice sizes to a
logarithmic singularity, which may also be consistent with
these experimental results.

C. Magnetic exponents

According to the FSS theory, the magnetization and the
susceptibility scale as M �L−�/� and ��L�/�, respectively. In

Fig. 9, we plot the order parameter M �left� and the suscep-
tibility �right� as a function of L for the AEIS model. Mag-
netization data �circles� have been fit to the preceding power-
law FSS expression �solid line�, giving � /�=0.523�3�. The
average sizes of Wolff clusters divided by L3, ��nW	
�squares�, scale with the same exponent as the squared
magnetization.47 This is confirmed by the power-law fit
�dashed line� which yields 2� /�=1.019�6�. These results
give an average estimate 2� /�=1.032�6�. Together with
1/��1.5 this gives �=0.34�4�, close to the pure 3DIS ex-
ponent and to the RDIS exponent. On the right side of Fig. 9,
points for the susceptibility obtained from simulations near
the critical point fit to the FSS power-law expression with the
exponent � /�=2.044�4�. All fits have been made for L
=56–96.

The results for magnetic effective FSS exponents, ob-
tained by fitting four consecutive points from Fig. 9, ending
at Lmax, are depicted in Fig. 10. Figure 10�a� shows the ef-
fective exponent for the susceptibility, �� /��eff, plotted ver-
sus Lmax

−1 . This exponent tends to increase for Lmax�48, but
beyond this size the tendency is to stabilize at a value close
to that of percolation, � /�=2−
�2.05. For larger Lmax, it
turns to approach a value lower than 2.00 �positive 
�. The
asymptotic extrapolated value seems to be the pure 3DIS
exponent � /�=1.966�3� �Ref. 22� or the RDIS exponent23

FIG. 8. �Top� Specific heat ch versus L for the AEIS in a linear-

log scale. A logarithmic singularity ��=0� for the specific heat at Jc
˜

follows from the fit �dashed line�. This result reinforces the esti-
mated 1/��1.5 �Fig. 6�. �Bottom� Energy plotted against L��−1�/�,
taking �=0 and 1/�=3/2, and the corresponding linear fit is shown
�dashed line�.
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� /�=1.963�5�. Berche and collaborators32 estimated effec-
tive values � /��2 for smaller concentrations in the RDIS
case. Using the result for Lmax=96, � /�=2.044�4�, and our
estimate �=2/3, the exponent � found in the present work is
1.363�9�, slightly above the value �=1.344�9� found in our
MC simulations for the RDIS model, and �=1.342 obtained
by Calabrese et al.15 for the same system. The tendency for
larger L is to be closer to RDIS results.

We must remind the reader at this point that the theoreti-
cally most accurate results, by Prudnikov et al.,18 predict a
magnetic exponent 
�0 for the 3DIS model in LRC disor-
dered structures with an algebraic decay similar to that of the
gelling clusters within DLCA aerogels at c=0.2.8

In Figs. 10�b� and 10�c�, squares represent effective expo-
nents �� /��eff obtained from ��nW	 and circles those ob-
tained directly from M. There is a strong variation of these
results with Lmax. As stated above, the exponent obtained
averaging both results using Lmax=96 is � /�=0.516�6�,
close to that of the pure 3DIS model, � /�=0.517�3�.22 In
addition, our results agree well with those reported for the
RDIS case by Ballesteros et al.,23 � /�=0.519�3�. In this
work, we obtain � /�=0.516�5� for the RDIS model. The last
effective value �� /��eff �Lmax=96�, together with 1/��1.5,
gives an exponent �=0.343�9� for the order parameter. This
result agrees well with experiments about the critical point of
the LV transition of N2 in 95% porous aerogels �c=0.05�,
reported by Wong et al.,20 which yield �=0.35�5�.

Care must be taken with this agreement because our re-
sults were obtained using DLCA at concentrations c=0.2 and
these structures are quite different from those at c=0.05. For
the latter, most of impurities belong to the LRC gelling clus-
ters, giving the DLCA aerogels a less random overall struc-
ture.

As stated above, a possible explanation for these magnetic
exponents is the influence of the LRC disorder fixed point.

The fractal dimension of the aerogel gelling cluster is df
�2.2, giving an exponent a�1.6 associated with this
structure.7 Following Table IV from Prudnikov et al.,18 a
value � /��2.0205 �
�−0.0205� is expected. The effective
value found in this work is close to this prediction, but it
follows from Fig. 10�b� that a tendency exists to approach a
value closer to the corresponding RDIS fixed point. Finally,
using effective values the hyperscaling relation � /�+2� /�
=3 seems not to hold, as seen in Fig. 10�c�. Violation of this
hyperscaling relation suggests that our results do not yet
reach asymptotic values. Extensive simulations still need to
be performed at the more accurate value Jc=0.258 570.

V. CONCLUDING REMARKS

Extensive Monte Carlo simulations of the 3D Ising model
with impurities have been reported in this paper. Using
finite-size scaling, critical couplings and exponents have
been estimated for the 3DIS model, in the presence of ran-
domly distributed impurities �RDIS model� and confined in
aerogel-like structures �AEIS model�. For the latter we have
collocated Ising spins in the pores of simulated DLCA aero-
gels at c=0.2. At this concentration, these objects are known

FIG. 9. Order parameter �left� and susceptibility �right�, at the

simulated critical point Jc
˜, versus L for the AEIS model. The mag-

netization M �circles� scales as L−�/�, and the averaged Wolff clus-
ter size ��nW	 scales as47 L−2�/� �squares�, giving an average esti-
mate of 2� /�=1.032�1�. The FSS power-law fit for the
susceptibility gives � /�=2.044�4�. All power-law fits have been
made for L=56−96.

FIG. 10. �Color online� �a� Effective exponents for the suscep-
tibility give �� /��eff=2−
eff�2. Extrapolation using Lmax�48
suggest that � /��2 in the thermodynamic limit. �b� Effective ex-
ponents �� /��eff for the magnetization �circles� and for the average
mass of Wolff clusters �squares�. At Lmax=96 both approach the
pure 3DIS theoretical estimate �Ref. 22� �� /��eff�0.517. �c� The
hyperscaling relation � /�+2� /�=d=3, not satisfied for effective
exponents, tends to hold for larger lattice sizes.
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to be nonfractal. However, the presence of hidden LRC could
affect criticality, as predicted by the theory.18 It has been
concluded elsewhere7 that these LRC structures, the gelling
clusters, modify the critical behavior of the 3D XY model
when confined in the same kind of aerogel-like structures. In
the 3DIS case, however, our results for the thermal expo-
nents 1 /��1.5 and � /��0 rest far above those for the LRC
fixed point predicted by the theory.18 Complementary simu-
lations at a more accurate value of the critical coupling, Jc
=0.258 570�13�, give an exponent 1 /��1.49. Although
similar thermal exponents have been reported by Pakhnin
and Sokolov48 for the RDIS universality class, the
asymptotic critical regime could have not been reached in
our simulations and more extensive simulations are yet to be
performed at this more accurate Jc value.

Effective critical exponents observed here for the AEIS
change from a fixed point �LRC� at box sizes L�48 to an-
other �SRC� at box sizes L�48 �Figs. 7 and 10�, probably
indicating an oscillating approach to the stable fixed point.
Theoretical predictions based on the Weinrib-Halperin
model,2,18 able to explain changes of the critical behavior of
the 3D XY model in the pores of DLCA aerogels,7 may also
explain the influence of this type of disorder on the 3DIS
model. In this case, two competing effects are present: the
random SRC subset of the disorder �defined in Sec. III A�,
which already affects the critical behavior of the 3DIS
model, and the LRC subset which, after the extended crite-
rion �2�, may be relevant as well. This is certainly not the
case for the 3D XY model, where the Harris criterion pre-
vents the SRC subset of impurities �islands� from being rel-
evant: only the weak LRC distribution of impurities �GC� is
relevant7 for the 3D XY model. For the 3DIS model, theory
predicts that both LRC and SRC subsets may be relevant.
Which one finally dominates the critical behavior?

The results presented in this paper suggest that, in the
AEIS case, the critical behavior is ruled by the SRC fixed

point. A plausible explanation of these dominating SRC ef-
fects is provided by theoretical works:2,18 for the 3DIS
model, RG flows converge to a more stable SRC fixed point,
because at m=1 the LRC fixed point is less stable �marginal�.
However, it has been mentioned before, without a proof,2

that the amplitudes of disorder may in some cases affect
criticality. Added in proof, we have to mention that in pre-
liminary simulations of the 3DIS model in the presence of
mixed kinds �LRC and SRC� of disorder,49 evidence of a
continuous flow from the LRC fixed point to the SRC one
has been observed when relative strengths are tuned from a
pure LRC distribution of defects to a 1:1 proportion. In the
AEIS case, we have analyzed the relative amplitudes
�strengths� of the LRC and SRC subsets of disorder, for L
=128, to determine that up to 97% of defects are due to
islands �SRC�, while only 3% are due to the GC’s �LRC�.

To conclude, it has to be stated that the influence of
aerogel-like distributions of impurities on the critical behav-
ior of the 3DIS model is yet far from being completely un-
derstood. The problem is similar to that of phase transitions
in Ising systems with noninteger dimension or in fractal
structures. It becomes clear that the fractal dimension, related
to the exponent a of subjacent long-range correlations, may
not be the only parameter to determine the universality class
of the impure system.50
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