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Geometrical resonance in spatiotemporal systems
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Apartado Postal 89000, Caracas 1080-A, Venezuela

(received 24 June 2003; accepted in final form 13 October 2003)

PACS. 05.45.Gg – Control of chaos, applications of chaos.
PACS. 47.54.+r – Pattern selection; pattern formation.
PACS. 05.45.Yv – Solitons.

Abstract. – We generalize the concept of geometrical resonance to perturbed sine-Gordon,
nonlinear Schrödinger and complex Ginzburg-Landau equations. Using this theory we can
control different dynamical patterns. For instance, we can stabilize breathers and oscillatory
patterns of large amplitudes successfully avoiding chaos. On the other hand, this method can be
used to suppress spatiotemporal chaos and turbulence in systems where these phenomena are
already present. This method can be generalized to even more general spatiotemporal systems.

Spatiotemporal chaos [1–5] is one of the most important (and most studied) phenomena of
recent years. Chaos can be advantageous in some situations, while in many other situations, it
should be avoided or controlled [6–14]. In certain cases, the desired effect is a high-amplitude
periodic oscillation. We should drive a nonlinear system with a large external force to produce
such a high-amplitude oscillation. However, this should be done in such a way that chaos is
avoided. Different feedback mechanisms have been devised to control chaos [7,15–17]. A great
deal of research has been dedicated also to the problem of suppressing chaos by harmonic (or
just periodic) perturbations [11, 14, 18–25]. Among those works are the ones that use the
concept of geometrical resonance (GR) [14,21,23–27].

In ref. [14] the concept of GR was used as a chaos-eliminating mechanism for the perturbed
ϕ4 equation. In this letter we generalize the concept of geometrical resonance to a very
general class of spatiotemporal systems which includes the sine-Gordon, nonlinear Schrödinger,
Boussinesq, Toda lattice and complex Ginzburg-Landau equations (among others). We will
use this concept as a method of chaos control when these equations are nonintegrable because
of the presence of perturbations. GR is an extension of the linear notion of resonance to a
nonlinear formulation based on a local energy conservation requirement [23].

Let us consider the partial differential equation

K0[φ] + K1[φ, x] = q(x, t)P [φ], (1)
c© EDP Sciences
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where K0[φ] and P [φ] are functions of φ, and its derivatives: φt, φx, φtt, φxx, etc. The equation
K0[φ] = 0 is an integrable Hamiltonian system. This can be, for instance, the sine-Gordon
equation (SGE), the nonlinear Schrödinger equation (NLSE), the Boussinesq equation, or the
Toda lattice [28,29]. On the other hand, K1[φ, x] includes dissipative terms and q(x, t)P [φ] is
a very general driving force [5, 30–32].

At GR the amplitude, frequency, and space-time shape of q(x, t) must satisfy some con-
ditions so that some dynamical properties of the conservative system are preserved. We will
call φGR(x, t) a GR solution of eq. (1) if

K1[φGR, x] = q(x, t)P [φGR]. (2)

This implies a local energy conservation requirement. The energy integral that is conserved
for equation K0[φ] = 0 is locally conserved for eq. (1) if condition (2) holds. We can use
this condition as a mechanism for chaos control when an additional condition holds: the
GR solution must be an asymptotically stable solution of the (full) eq. (1). This condition
is introduced here for the first time. We will call eq. (2) the exact GR condition and the
solutions that satisfy this condition will be called GR solutions.

We can consider the energy of the system as a “local almost adiabatic invariant” [33].
Then we can write an approximate GR condition〈

dH

dt

〉
T ′

� 0, (3)

where H is the energy of the system and T ′ is the period of the chosen solution of the equation
K0[φ] = 0.

As an example, let us investigate the well-known driven and damped SGE,

φtt − φxx + γφt + sin φ = q(x, t). (4)

Suppose the task is to produce breathers of large amplitudes without entering a chaotic
regime. The exact breather solution to the unperturbed SGE is

φ(x, t) = 4 arctan

[ √
1 − ω2 sin(ωt)

ω cosh
(√

1 − ω2x
)
]

, (5)

where ω is arbitrary in the interval ω2 < 1.
The external force q(x, t) satisfies the GR condition (2) when

q(x, t) = qGR(x, t) ≡ 4γ
√

1 − ω2 cos(ωt)

cosh(
√

1 − ω2x) +
(

1−ω2

ω2

)[ sin2(ωt)

cosh(
√

1−ω2x)

] . (6)

In eq. (4) if q(x, t) is given by (6), the function (5) is an exact solution of the complete
eq. (4). When the parameters that define the perturbation (6) are fixed, there is only one fre-
quency for which function (5) is the solution. This frequency is determined by that appearing
in (6).

It is not difficult to show that the solution (5) is asymptotically stable in the framework
of the full eq. (4) with q(x, t) given by eq. (6). In the framework of the unperturbed SGE,
breathers form a continuum of solutions similar to the periodic solutions around the fixed
points called centers in dynamical systems theory. These solutions are stable in the sense of
Lyapunov but they are not asymptotically stable. However, the breather solution (5) in the
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Fig. 1 – Robustness of the breather in eq. (4). (a) Even with random initial conditions the breather is
reorganized (ω = 0.707, γ = 0.45). In the numerical simulations with the discretized equation the ini-
tial conditions were produced by a pseudorandom number generator of uniformly distributed values in
the interval [−1, 1]. (b) Irregular dynamics produced with a perturbation where the amplitude A, the
frequency ω and the range Q are not close to satisfy the GR condition (A = 4.5, ω = 0.707, Q = 6.6).

framework of eq. (4) with q(x, t) given by eq. (6) is a spatiotemporal limit cycle. That is,
this is a spatiotemporal attractor. All close initial conditions (in all space configurations) for
t → ∞ will tend to behave as this solution. This phenomenon is shown in fig. 1(a).

The perturbation qGR(x, t) can be approximated by a function of type q(x, t) = f(t)g(x),
where g(x) is a bell-shaped function and f(t) is a time-periodic function. This kind of per-
turbations has been used in several studies of the SGE [34,35].

The general study of eq. (4) using the GR concept and the breather solutions leads to
the following conclusions: We can avoid chaos with amplitudes A of q(x, t) for which |A| ≤
4γ

√
1 − ω2 and ω2 < 1. On the other hand, the range Q of the function g(x) (i.e. the interval

of x where g(x) is not exponentially small) should be Q ≤ 1√
1−ω2 .

In some cases, when these conditions are not satisfied, the breather is not stabilized and
we can get an irregular behavior. Figure 1(b) shows an example of the dynamics produced
by eq. (4) with q(x, t) = A cos(ωt)[cosh x

Q + (1−ω2

ω2 )( sin2(ωt)
cosh x

Q
)]−1, where A = 4.5, ω = 0.707,

Q = 6.6.
There is a wealth of works [34, 35] dedicated to the numerical investigation of perturbed

sine-Gordon equations using external forces of type q(x, t) = f(t)g(x). All the results are in
agreement with our theoretical results.

Sometimes we have the task of suppressing chaos using a given harmonic perturbation.
Consider, e.g., the following equation:

φtt − φxx + γφt + sin φ = f0 sin(ωdt) + fc sin[ωct + θ], (7)

where f0 sin(ωdt) is a chaos-producing excitation, while fc sin[ωct + θ] is a chaos-suppressing
excitation. The parameters of the chaos-suppressing excitation should be determined. In this
case we can use the condition (3) to find parameters for the chaos-suppressing perturbation.
Figure 2(a)-(b) shows an example of chaos control using this technique.

We would like to stress here that the force (6) can be used to control a well-developed
spatiotemporal chaos.
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Fig. 2 – Suppression of spatiotemporal chaos using a given chaos-suppressing excitation in eq. (7)
(f0 = 0.91, ωd = 0.6): (a) well-developed spatiotemporal chaos when fc = 0; (b) controlled dynamics
with fc = 0.4, ωc = 0.6, θ = π/2. Controlling spatiotemporal chaos using a localized excitation
in eq. (8): (c) spatial profile for a given time moment corresponding to spatiotemporal chaos when
Fc(x, t) = 0; (d)-(k) spatial profiles for different time instants when Fc(x, t) is given by eq. (6),
γ = 0.1, f0 = 0.5, ωd = 0.6, ω = 0.6. The time instants are (d) t = 0.97, (e) t = 7.9, (f) t = 15.4,
(g) t = 21, (h) t = 26.2, (i) t = 36.8, (j) t = 42, (k) t = 46.8.

Let us consider the following equation:

φtt − φxx + γφt + sin φ = f0 sin(ωdt) + Fc(x, t), (8)

when Fc(x, t) ≡ 0, the system presents spatiotemporal chaos for −∞ < x < ∞, see fig. 2(c).
Now, if we turn on the controlling force Fc(x, t) defined as function (6), we obtain a very
regular spatiotemporal pattern as that shown in fig. 2(d)-(k). The most important remark
here is that we are controlling spatiotemporal chaos in the whole space using a localized
perturbation. We should add here that other works have used localized perturbations to
control spatiotemporal chaos [36–38].

The damped and ac-driven NLSE

iφt + φxx + 2|φ|2φ + iαφ = εeiωt (9)

is another fundamental model in many areas of physics [39–41]. At sufficiently large ε the
dynamics of this model becomes chaotic [41].

Suppose we have a general driving term: iφt + φxx + 2|φ|2φ + iαφ = q(x, t). We will take
the one-soliton solution of the unperturbed NLSE [29] as a GR solution: Then q(x, t) must
satisfy the condition

qGR(x, t) =
α
√

ωei(ωt+π/2)

cosh(
√

ωx)
, (10)

where ω can be any positive number. Thus, if the perturbation is localized and the amplitude
ε satisfies the condition ε ≈ α

√
ω, then the chaotic regime can be avoided. The one-soliton

solution of the NLSE is stabilized. We should remark that this can be achieved also by other
localized perturbations.
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If we use the two-soliton breather solution as a GR solution, we can obtain another driving
force satisfying a GR condition:

qGR(x, t) =
4α[cosh(3x) + 3ei8t cosh(x)]ei(t+π/2)

cosh(4x) + 4 cosh(2x) + 3 cos(8t)
. (11)

See ref. [29] for a discussion of multisoliton solutions. As in eq. (10), we can introduce here
an arbitrary parameter ω. However, in this case, we are more interested in the relationship
between the two intrinsic frequencies of the solution. This force can be approximated by a
function of type

F (x, t) = ε1g1(x)ei(ω1t+π/2) + ε2g2(x)ei(ω2t+π/2), (12)

where ω1 = 1, ω2 = 9, and g1(x) and g2(x) are localized functions.
In ref. [41] a breather was stabilized using a two-frequency drive: F (x, t) = ε1e

iω1t+ε2e
iω2t,

where ω1 = 1 and ω2 = 9. This result can be seen as a confirmation of the GR approach
for the NLSE. We should add that the phenomenon of breather stabilization is quite robust.
For instance, if ω1 = 1, in addition to ω2 = 9, other close frequencies can be used, namely
ω2 = 8 and ω2 = 10. This means that the GR condition can be satisfied approximately and
that eq. (3) can also be used as a guide for the search of a controlling force. As in the case of
the breather of the SGE, the breather of the NLSE is asymptotically stable. We have checked
numerically that the nonchaotic breather solution is the most stable one. Unfortunately, we
have no space to show a picture.

Regarding localized excitations we should emphasize that the GR analysis explains diverse
fundamental results on the stability of localized solutions previously obtained by perturbation
theory [5,14,41] including those relative to one-soliton and two-soliton solutions of the NLSE.
In this sense, in future works, it would be interesting to consider the case of the N -soliton
solutions (see, e.g., appendix B in ref. [29]).

The control of spatiotemporal chaos (or turbulence) in the complex Ginzburg-Landau
equation (CGLE) [12,42–47] is a problem of great practical interest [47]. We are interested in
the modified CGLE [12,43]:

φt = φ + (1 + ic1)φxx − (1 − ic3)|φ|2φ + Fc(x, t). (13)

The term Fc(x, t) is the control signal. Without the control signal (Fc(x, t) = 0), the
turbulence develops when the Benjamin-Feir condition 1− c1c3 < 0 is satisfied. This equation
can be rewritten in the following form:

iφt + c1φxx + c3|φ|2φ = i
(
φxx + φ − |φ|2φ)

+ iFc(x, t). (14)

When the right-hand side of eq. (14) is zero, it reduces to the NLSE.
If φ(x, t) = f(x) exp[iωt] is a soliton solution of the NLSE, then we can use the following

controlling signal:
Fc(x, t) =

[
f3(x) − f(x) − fxx(x)

]
exp[iωt]. (15)

Equation (13) (with Fc ≡ 0) presents turbulence for c1 = 2, c3 = 0.8. We have been able
to suppress this turbulence using the Fc(x, t) given by eq. (15) with ω = 12 and f(x) is the
one-soliton solution of equation c1fxx − ωf + c3f

3 = 0 [29].
In this context, we should explain that in some cases, the stabilization process can require

a force that is not a small perturbation. Furthermore, this technique can be used both as a
way to stabilize a pre-existing solution of the unperturbed system and as a way to impose
an arbitrary solution to the system. However, the success of all these endeavors depends on
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a very important fact: the final solution should be an asymptotical stable solution of the
perturbed system. Incidentally, we should mention that the stabilization of unstable plane
waves in the CGLE can be done using a nonlinear diffusion term [48].

In some situations we can apply some perturbations using technological means in order
to satisfy the stability conditions. Nevertheless, we should say that, very often, nature itself
can apply the controlling perturbations. There are many natural regimes described by the
mentioned equations in the presence of perturbations where the resulting dynamics is not
chaotic. Our results can provide an explanation for these phenomena.

Numerous observations and experiments show that elastic waves from natural phenomena
and human-made machines may alter water and oil production [49]. In some cases, wave
excitation may appreciably increase the mobility of these fluids. A new technology [49] based
on these experiments is used to stimulate the reservoir as a whole. Here seismic frequency
waves are applied at the Earth’s surface by arrays of vibrators. Many of the phenomena
involved in this effect are described by the equations discussed in this paper, namely: NLSE,
SGE, Boussinesq equation and other equations of type (1) (see ref. [50]). For the optimization
of the method, it is necessary to sustain spatiotemporal nonlinear oscillations of the reservoir
with some frequency and shape. Based on ideas related to the results presented in this paper
we have designed a new technology using a specific geometrical arrangement of the surface
vibrators [51].

The nonlinear PDE possess an infinite number of different solutions. Among them one
can choose a feasible one in order to implement. Even if only a given type of perturbation is
allowed due to technical limitations, it is always possible to use the approximate condition (3)
as in the case of task (7).

The concept that links all the situations where we have been able to suppress chaos is based
on the mutual cancellation of nonintegrable terms as described by eqs. (2) and (3). In other
words, we should add some temporal perturbation in such a way that (at least approximately)
both the dissipative and the total driving terms mutually cancel. A remarkable situation
(which is a particular case of the general theory but, at the same time, is present in all the
studied systems) is that of breather-like oscillations. These patterns can be stabilized using
some spatially localized time-periodic perturbations, where the amplitude, the spatial range
and the frequency must satisfy some relationship. However, this phenomenon is robust. A
fine-tuning is not necessary. There is always a whole valid interval of values for the amplitude,
range and frequency that produces qualitatively the same result.

The most common perturbation in scientific research is F (t) = f0 cos(ωt). However, nature
is very rich in dynamical behaviors. Our work shows that using very general spatiotemporal
perturbations F (x, t) we can make the difference between regular or chaotic behavior. Using
certain spatiotemporal perturbations F (x, t) we can stabilize a breather or we can produce
a turbulent dynamics. We have been able to control different patterns in the sine-Gordon,
nonlinear Schrödinger, and complex Ginzburg-Landau equations. Each of these systems pos-
sesses wide applications in many areas of Physics. Furthermore, we believe that these ideas
can be applied to other systems.
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[3] Chaté H., Physica D, 86 (1995) 238.
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