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Abstract

We generalize the concept of geometrical resonance to perturbed sine-Gordon, Nonlinear Schr€odinger, u4, and

Complex Ginzburg–Landau equations. Using this theory we can control different dynamical patterns. For instance, we

can stabilize breathers and oscillatory patterns of large amplitudes successfully avoiding chaos. On the other hand, this

method can be used to suppress spatiotemporal chaos and turbulence in systems where these phenomena are already

present. This method can be generalized to even more general spatiotemporal systems. A short report of some of our

results has been published in [Europhys. Lett. 64 (2003) 743].

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Spatiotemporal chaos [1–6] is one of the most important (and most studied) phenomena of recent years. Chaos can

be advantageous in some situations, while in many others it should be avoided or controlled [7–15]. In certain cases, the

desired effect is a high-amplitude periodic oscillation. We should drive a nonlinear system with a large external force to

produce such a high-amplitude oscillation. However, this should be done in such a way that chaos is avoided. Different

feedback mechanisms have been devised to control chaos [8,16–18]. A great deal of research has been dedicated also to

the problem of suppresing chaos by harmonic (or just periodic) perturbations [12,15,19–26]. Among those works are the

ones that use the concept of geometrical resonance (GR) [15,22,24–28].

In Ref. [15] the concept of GR was used as a chaos-eliminating mechanism for the perturbed u4 equation. In this

paper we generalize the concept of geometrical resonance to a very general class of spatiotemporal systems which

includes the sine-Gordon, Nonlinear Schr€odinger, Boussinesq, Toda lattice and Complex Ginzburg–Landau equations

(among others). We will use this concept as a method of chaos control when these equations are nonintegrable because

of the presence of perturbations. GR is an extension of the linear notion of resonance to a nonlinear formulation based

on a local energy conservation requirement [24].

The paper is organized as follows: In Section 2 we introduce the general concept of geometrical resonance for

spatiotemporal systems. Section 3 is dedicated to the perturbed sine-Gordon equation. There, using the exact geo-

metrical resonance condition for the perturbed sine-Gordon equation, we show how a breather can be stabilized using

external perturbations. In Section 4 we show that an approximate geometrical resonance condition can control spa-

tiotemporal chaos, introducing a given additional perturbation. In this case, the controlling perturbation is not
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arbitrary, only some parameters can be changed in order to control the dynamics. Section 5 is dedicated to the

Nonlinear Schr€odinger equation. In Section 6, using the u4 equation, we explain how this technique can be used even in

systems where the original equation is not integrable. Section 7 is devoted to the Complex Ginzburg–Landau equation.

Finally, in Section 8 we discuss some general conclusions and experimental considerations which include possible

applications in new oil technologies.
2. Geometrical resonance

Let us consider the partial differential equation
K0½/� þ K1½/; x� ¼ qðx; tÞP ½/�; ð1Þ
where K0½/� and P ½/� are functions of /, and its derivatives: /t, /x, /tt, /xx, etc.

Equation
K0½/� ¼ 0 ð2Þ
is an integrable Hamiltonian system. This can be, for instance, the sine-Gordon equation (SGE) /tt � /xx þ
sin/ ¼ 0, the Nonlinear Schr€odinger equation (NLSE) i/t þ /xx þ 2j/j2/ ¼ 0, the Boussinesq equation

/tt � c/xx � 2að/2
x þ //xxÞ � /xxxx ¼ 0, or the Toda lattice [29,30].

On the other hand, K1½/; x� includes dissipative terms and qðx; tÞP ½/� is a very general driving force [6,31–33].

At GR, the amplitude, frequency, and space–time shape of qðx; tÞ must satisfy some conditions so that some

dynamical properties of the conservative system are preserved. We will call /GRðx; tÞ a GR solution of Eq. (1) if
K1½/GR; x� ¼ qðx; tÞP ½/GR�: ð3Þ
This implies a local energy conservation requirement. The energy integral that is conserved for Eq. (2) is locally

conserved for Eq. (1) if condition (3) holds. We can use this condition as a mechanism for chaos control when an

additional condition holds: the GR solution must be an asymptotically stable solution of the (full) Eq. (1). This

condition is introduced here for the first time. We will call Eq. (3) the exact GR condition and the solutions that satisfy

this condition will be called GR solutions.

We can consider the energy of the system as a ‘‘local almost adiabatic invariant’’ [34]. Then we can write an

approximate GR condition
dH
dt

� �
T 0
’ 0; ð4Þ
where H is the energy of the system and T 0 is the period of the chosen solution of Eq. (2).
3. Perturbed sine-Gordon equation

As an example, let us use the well-known driven and damped SGE
/tt � /xx þ c/t þ sin/ ¼ qðx; tÞ: ð5Þ
Suppose the task is to produce breathers of large amplitudes without entering a chaotic regime.

The exact breather solution to the unperturbed SGE is
/ðx; tÞ ¼ 4 arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
sinðxtÞ

x cosh½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
x�

" #
: ð6Þ
where x is arbitrary in the interval x2 < 1.

The external force qðx; tÞ satisfies the GR condition (3) when
qGRðx; tÞ ¼
4c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
cosðxtÞ

cosh½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
x� þ 1�x2

x2

� �
sin2ðxtÞ

cosh½
ffiffiffiffiffiffiffiffi
1�x2

p
x�

� � : ð7Þ
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In Eq. (5) if qðx; tÞ is given by (7), the function (6) is an exact solution of the complete Eq. (5). When the parameters that

define the perturbation (7) are fixed, there is only one frequency for which function (6) is the solution. This frequency is

determined by that appearing in (7).

Let us investigate the stability of solution (6) in the framework of equation (5) with qðx; tÞ given by function (7).

Suppose /ðx; tÞ ¼ /brðx; tÞ þ wðx; tÞ, where jwðx; tÞj � j/ðx; tÞj. The equation for wðx; tÞ will be
Fig. 1

ð/ðx; 0
cases c
wtt � wxx þ cwt þ ðcos/brÞw ¼ 0: ð8Þ
This equation (for c ¼ 0) is well known, because it is obtained for the stability problem of the original breather solutions

for the unperturbed sine-Gordon equation. From this equation we get that the breather is marginally stable. That is, the

breather is stable in the sense of Lyapunov. For small wðx; t ¼ 0Þ, wðx; tÞ will remain small. In fact, the solutions for

wðx; tÞ are time-periodic.

However, in the dissipative equation (8) (with c > 0) the functions wðx; tÞ will decay, i.e., wðx; tÞ ! 0 as t ! 0. In fact,

if we define the ‘‘energy’’ of (8) as
EðwÞ ¼ w2
t

2
þ w2

x

2
þ ðcos/brÞ

w2

2
; ð9Þ
then,
dEðwÞ
dt

¼ �cw2
t < 0: ð10Þ
Nevertheless, the solution (6) is asymptotically stable in the framework of the full Eq. (5) with qðx; tÞ given by

function (7).

Thus, in the framework of the unperturbed SGE breathers form a continuum of solutions similar to the periodic

solutions around the fixed points called centers in Dynamical Systems theory. These solutions are stable in the sense of

Lyapunov but they are not asymptotically stable.

However, the breather solution (6) in the framework of Eq. (5) with qðx; tÞ given by Eq. (7) is a spatiotemporal limit

cycle. That is, this is an spatiotemporal attractor. All close initial conditions (in all space configurations) for t ! 1 will

tend to behave as this solution. This phenomenon is shown in Figs. 1 and 2.

Perturbation qGRðx; tÞ can be approximated by a function of type qðx; tÞ ¼ f ðtÞgðxÞ where gðxÞ is a bell-shaped

function and f ðtÞ is a time-periodic function. This kind of perturbations has been used in several studies of the SGE

[35,36].

The general study of Eq. (5) using the GR concept and the breather solutions leads to the following conclusions: We

can avoid chaos with amplitudes A of qðx; tÞ for which jAj6 4c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
and x2 < 1. On the other hand, the range Q of

the function gðxÞ (i.e. the interval of x where gðxÞ is not exponentially small) should be Q6
1ffiffiffiffiffiffiffiffi

1�x2
p .

In some cases, when these conditions are not satisfied, the breather is not stabilized and we can get an

irregular behavior. Fig. 3 shows an example of the dynamics produced by Eq. (5) with qðx; tÞ ¼ A cosðxtÞ
cosh x

Q þ ð1�x2

x2 Þðsin
2ðxtÞ

cosh x
Q
Þ

h i�1

where A ¼ 4:5, x ¼ 0:707, Q ¼ 6:6.

There is a wealth of works [35,36] dedicated to the numerical investigation of perturbed sine-Gordon equations using

external forces of type qðx; tÞ ¼ f ðtÞgðxÞ. All the results are in agreement with our theoretical results. For instance,
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Fig. 3. Irregular dynamics produced with a perturbation where the amplitude A, the frequency x and the range Q are not close to

satisfy the GR condition (A ¼ 4:5, x ¼ 0:707, Q ¼ 6:6).

Fig. 2. Self-organization of the breather in Eq. (5). From random initial conditions the breather is reorganized (x ¼ 0:707, c ¼ 0:45).

In the numerical simulations with the discretized equation the initial conditions were produced by a pseudorandom number generator

of uniformly distributed values in the interval ½�1; 1�.
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following the ideas of Ref. [36] we studied the equation /tt þ c/t � /xx þ sin/ ¼ F ðx; tÞ where F ðx; tÞ ¼ 0 if 06 x6 15,

F ðx; tÞ ¼ gac cosxt (x ¼ 0:9) if 15 < x < 25, and F ðx; tÞ ¼ 0 if 256 x6 40. For gac ¼ 0:01 and c ¼ 0:01, we obtain a

nonchaotic regime. For gac ¼ 0:5 and c ¼ 0:01, we obtain spatiotemporal chaos.
4. Using the approximate condition

For the perturbed SGE
/tt � /xx þ Rð/;/t; xÞ þ sin/ ¼ qðx; tÞ; ð11Þ
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Eq. (4) becomes
Fig. 4

develo

Fig. 5

spondi

(7), c ¼
Z 1

�1
½Rð/;/t; xÞ/t

�
� qðx; tÞ/t�dx

�
T 0
¼ 0: ð12Þ
Sometimes we have the task of suppressing chaos using a given harmonic perturbation. Consider e.g. the following

equation:
/tt � /xx þ c/t þ sin/ ¼ f0 sinðxd tÞ þ fc sin½xct þ h�; ð13Þ
where f0 sinðxd tÞ is a chaos-producing excitation, while fc sin½xct þ h� is a chaos-suppressing excitation. The parameters

of the chaos-suppressing excitation should be determined.

In this case we can use the condition (12) to find parameters for the chaos-suppressing perturbation. Fig. 4 shows an

example of chaos control using this technique.

We would like to stress here that the force (7) can be used to control a well-developed spatiotemporal chaos.

Let us consider the following equation:
/tt � /xx þ c/t þ sin/ ¼ f0 sinðxd tÞ þ Fcðx; tÞ: ð14Þ
When Fcðx; tÞ � 0, the system presents spatiotemporal chaos for �1 < x < 1. Now, if we turn on the controlling force

Fcðx; tÞ defined as function (7), we obtain a very regular spatiotemporal pattern as that shown in Fig. 5.
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Fig. 6. Chaos and order in the spatiotemporal dynamics of Eq. (15): (a) well-developed chaos, Fpðx; tÞ ¼ ½f1 cosðx1tÞg1ðxÞþ
f2 cosðx2tÞg2ðxÞ�QðxÞ, g1ðxÞ ¼ cosh½B2ðx� x2Þ�, g2ðxÞ ¼ coshðB1xÞ, QðxÞ ¼ sechðB1xÞsech½B2ðx� x2Þ�, f1 ¼ 0:5, c ¼ 0:01, x1 ¼ 1,

B1 ¼ 0:01, x2 ¼ 0:5, f2 ¼ 4c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

c

p
, B2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

2

p
, x2 ¼ 0:5 and (b) regular dynamics obtained when the controlling function is

applied, Fcðx; tÞ ¼ fc cosðxc þ hÞ= coshðB1xÞ, fc ¼ 0:47, xc ¼ 1.
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The most important remark here is that we are controlling spatiotemporal chaos in the whole space using a localized

perturbation. Also, we should add here that other works have used localized perturbations to control spatiotemporal

chaos [37–39].

In general, even if we have a very complicated chaos-producing perturbation Fpðx; tÞ as in the following equa-

tion:
/tt � /xx þ c/t þ sin/ ¼ Fpðx; tÞ þ Fcðx; tÞ; ð15Þ
the important idea is to use a controlling function Fcðx; tÞ such that the general force F ðx; tÞ ¼ Fcðx; tÞ þ Fpðx; tÞ is as

close as possible to a qGRðx; tÞ that satisfies the GR condition. This can be for instance the function defined by Eq. (7).

An example is shown in Fig. 6.
5. Nonlinear Schrödinger equation

The damped and ac-driven NLSE
i/t þ /xx þ 2j/j2/þ iau ¼ eeixt ð16Þ
is another fundamental model in many areas of Physics [40–42]. At sufficiently large e the dynamics of this model

becomes chaotic [42].

Suppose we have a general driving term
i/t þ /xx þ 2j/j2/þ iau ¼ qðx; tÞ: ð17Þ
We will take the one-soliton solution of unperturbed NLSE [30] as a GR solution: Then qðx; tÞ must satisfy the con-

dition:
qGRðx; tÞ ¼
a

ffiffiffiffi
x

p
eiðxtþp=2Þ

coshð
ffiffiffiffi
x

p
xÞ : ð18Þ
where x can be any positive number.

Thus, if the perturbation is localized and the amplitude e satisfies the condition e � a
ffiffiffiffi
x

p
, then the chaotic regime can

be avoided. The one-soliton solution of NLSE is stabilized. We should remark that this can be achieved also by other

localized perturbations.

If we use the two-soliton breather solution as a GR solution, we can obtain another driving force satisfying a GR

condition:
qGRðx; tÞ ¼
4a½coshð3xÞ þ 3ei8t coshðxÞ�eiðtþp=2Þ

coshð4xÞ þ 4 coshð2xÞ þ 3 cosð8tÞ : ð19Þ
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See Ref. [30] for a discussion of multisoliton solutions. As in Eq. (18) we can introduce here an arbitrary parameter

x. However, in this case, we are more interested in the relationship between the two intrinsic frequencies of the

solution.

This force is similar to a function of type
F ðx; tÞ ¼ e1g1ðxÞeiðx1tþp=2Þ þ e2g2ðxÞeiðx2tþp=2Þ; ð20Þ
where x1 ¼ 1, x2 ¼ 9, and g1ðxÞ and g2ðxÞ are localized functions.

In Ref. [42] a breather was stabilized using a two-frequency drive:
F ðx; tÞ ¼ e1e
ix1t þ e2e

ix2 t; ð21Þ
where x1 ¼ 1 and x2 ¼ 9. This result can be seen as a confirmation of the GR approach for the NLSE. We should add

that the phenomenon of breather stabilization is quite robust. For instance, if x1 ¼ 1, in addition to x2 ¼ 9, other close

frequencies can be used, namely x2 ¼ 8 and x2 ¼ 10. This means that the GR condition can be satisfied approximately

and that Eq. (4) can also be used as a guide for the search of a controlling force. As in the case of the breather of the

SGE, the breather (19) of the NLSE is asymptotically stable.

Regarding localized excitations we should emphasize that GR analysis explains diverse fundamental results on

stability of localized solutions previously obtained by perturbation theory [6,15,42] including those relative to one-

soliton and two-soliton solutions of the NLSE. In this sense, in future works, it would be interesting to consider the case

of the N-soliton solutions (see e.g. Appendix B, Ref. [30]).
6. Perturbed /4 equation

The general theory for Eq. (1) assumes that Eq. (2) is an integrable system. In this section we wish to show an

example where, even if the basic equation is nonintegrable, we can apply the concept of geometrical resonance.

The well-known /4 equation
/tt � /xx �
1

2
ð/� /3Þ ¼ 0 ð22Þ
is nonintegrable in the sense that only a finite number integrals of motion are conserved. However, this does not mean

that all the regimes in Eq. (22) are chaotic. In fact, the behavior of a kink-soliton in Eq. (22) is similar to that of a free

particle [31–33].

Moreover, even a system much more complicated than Eq. (22)
/tt � /xx �
1

2
ð/� /3Þ ¼ F ðxÞ ð23Þ
can be shown to be equivalent to a very regular particle motion.

If we have a kink-soliton as the initial condition for Eq. (23), then the dynamics will be similar to a particle moving

in a potential where F ðxÞ is the effective force [15,31–33]. The zeroes of F ðxÞ are approximately the equilibrium positions

for the soliton. In fact, if x ¼ x�0 is an equilibrium position ðF ðx�0Þ ¼ 0Þ, then it is stable if
�
oF ðxÞ
ox

�
x¼x�

0

> 0. Small per-

turbation of a soliton near a stable equilibrium position lead to linear oscillations of the soliton center of mass. These

oscillations are not chaotic.

It is well known [31–33] that the following perturbed /4 equation
/tt þ c/t � /xx �
1

2
ð/� /3Þ ¼ A tanhðBxÞ ð24Þ
with a kink-soliton as the initial condition, is equivalent to a damped harmonic oscillator in the sense that the center of

mass of the soliton performs linear damped oscillations around the point x ¼ 0. Thus the system
/tt � /xx �
1

2
ð/� /3Þ ¼ A tanhðBxÞ ð25Þ
can be seen as a soliton ‘‘harmonic’’ oscillator where the soliton motion is ‘‘integrable’’.

Chaos can be produced using the following perturbations in the /4 equation
/tt þ c/t � /xx �
1

2
ð/� /3Þ ¼ F ðxÞ � P0

cosðxtÞ
cosh2ðBxÞ

; ð26Þ
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where F ðxÞ is a function with three zeroes and P0 cosðxtÞ= cosh2ðBxÞ is an additional spatiotemporal perturbation

[6,15,31–33].

Some other forces F ðxÞ also act as effective nonlinear forces for the soliton. For instance, F ðxÞ ¼ A tan3ðBxÞ leads to
a soliton motion equivalent to the cubic Duffing equation
Xtt þ cXt þ bX 3 ¼ f0 cosðxtÞ: ð27Þ
Consider now the following chaos-suppression problem:
/tt þ c/t � /xx �
1

2
ð/� /3Þ ¼ F ðxÞ � P0

cosðxtÞ
cosh2ðBxÞ

þ Fcðx; tÞ: ð28Þ
For Fcðx; tÞ � 0, the soliton in Eq. (28) enters a regime of chaotic motion. We assume that the controlling function is

given by
Fcðx; tÞ ¼
gc cosðxct þ hcÞ

coshKðBxÞ
: ð29Þ
The parameters of Fcðx; tÞ can be obtained from the application of the approximate GR condition:
Z 1

�1

"*
� c

o/GR

ot

� 	2

� P0
o/GR

ot
cosðxtÞ
cosh2ðBxÞ

þ gc
o/GR

ot
cosðxct þ hcÞ
coshKðBxÞ

#
dx

+
T 0

¼ 0: ð30Þ
The approximate solution for the ‘‘unperturbed’’ nonchaotic soliton motion in equation
/tt � /xx �
1

2
ð/� /3Þ ¼ F ðxÞ ð31Þ
is the following:
/GRðx; tÞ ¼ A tanhðBxÞ þ h00 cosðx0t þ h0Þ
coshKðBxÞ

; ð32Þ
where KðKþ 1Þ ¼ 3A2=2B2, x2
0 ¼ C0 � B2K� 1.

We will use this function as our geometrical resonance solution. Eq. (30) yields
�pch00 � gc

Z T0

0

sinðx0t þ h0Þ cosðxct þ hcÞdt þ pCKP0

Z T0

0

sinðx0t þ h0Þ cosðxtÞdt ¼ 0; ð33Þ
where T0 ¼ 2p=x0 and CK ¼ ½
R1
0

sechKþ2ðxÞdx�½p
R1
0

sech2KðxÞdx��1
. We can play with the control parameters gc, xc and

hc in such a way that Eq. (33) is satisfied (at least approximately). Eq. (33) can be re-written in the following form:
gc
p
¼ CKP0Wðb; h0; 0Þ � ch00x0

Wða; h0; hcÞ
; ð34Þ
where a � xc=x0, b � x=x0, Wðk; h; dÞ �
R 2p
0
sinðt þ hÞ cosðkt þ dÞdt. The set of parameters fx; P0; b;A; h00; h0; cg is

given.

Eq. (34) produces the conditions to be satisfied by the control parameters. Given a ¼ p=q, with p and q relative

primes, we can use a h�c that maximizes Wða; h0; hcÞ.
Once h�c is obtained, we will have gcðminÞ:
gcðminÞ ¼
p½CKP0Wðb; h0; 0Þ � ch00x0�

Wða; h0; h�cÞ
: ð35Þ
7. Complex Ginzburg–Landau equation

The control of spatiotemporal chaos (or turbulence) in the Complex Ginzburg–Landau equation (CGLE) [13,43–48]

is a problem of great practical interest [48].

We are interested in the modified CGLE [13,44]:
/t ¼ /þ ð1þ ic1Þ/xx � ð1� ic3Þj/j2/þ Fcðx; tÞ: ð36Þ



Fig. 7. Phase dynamics in Eq. (36). (a) Phase turbulence for c1 ¼ 2, c3 ¼ 0:8, Fcðx; tÞ ¼ 0 and (b) suppression of turbulence when

control perturbation (38) is applied, x ¼ 12.
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The term Fcðx; tÞ is the control signal. Without the control signal ðFcðx; tÞ ¼ 0Þ, the turbulence develops when the

Benjamin–Feir condition 1� c1c3 < 0 is satisfied.

This equation can be rewritten in the following form:
i/t þ c1/xx þ c3j/j2/ ¼ ið/xx þ /� j/j2/Þ þ iFcðx; tÞ: ð37Þ
When the right-hand side of Eq. (37) is zero, it reduces to the NLSE.

If /ðx; tÞ ¼ f ðxÞ expð�ixtÞ is a soliton solution of the NLSE, then we can use the following controlling signal:
Fcðx; tÞ ¼ ½f 3ðxÞ � f ðxÞ � fxxðxÞ� expð�ixtÞ: ð38Þ
Eq. (36) (with Fc � 0) presents turbulence for c1 ¼ 2, c3 ¼ 0:8. We have been able to suppress this turbulence using the

Fcðx; tÞ given by Eq. (38) with x ¼ 12 and f ðxÞ is the one-soliton solution of equation c1fxx � xf þ c3f 3 ¼ 0 [30]. Fig. 7

shows the behavior of (36) before and after the application of the controlling signal (38).

In this context, we should explain that in some cases, the stabilization process can require a force that is not a small

perturbation. Furthermore, this technique can be used both as a way to stabilize a pre-existing solution of the

unperturbed system and as a way to impose an arbitrary solution to the system. However, the success of all these

endeavors depends on a very important fact: the final solution should be an asymptotical stable solution of the per-

turbed system. Incidentally, we should mention that the stabilization of unstable plane waves in the CGLE can be done

using a nonlinear diffusion term [49].
8. Discussion and conclusions

In some situations we can apply some perturbations using technological means in order to satisfy the stability

conditions. Nevertheless, we should say that, very often, nature itself can apply the controlling perturbations. There are

many natural regimes described by the mentioned equations in the presence of perturbations where the resulting

dynamics is not chaotic. Our results can provide an explanation for these phenomena.

Numerous observations and experiments show that elastic waves from natural phenomena and human-made ma-

chines may alter water and oil production [50]. In some cases wave excitation may appreciably increase the mobility of

these fluids. A new technology [50] based on these experiments is used to stimulate the reservoir as a whole. Here seismic

frequency waves are applied at the earth’s surface by arrays of vibrators. Many of the phenomena involved in this effect

are described by the equations discussed in this paper, namely: NLSE, SGE, Boussinesq equation and other equations

of type (1) (see Ref. [51] and references therein). For the optimization of the method, it is necessary to sustain spa-

tiotemporal nonlinear oscillations of the reservoir with some frequency and shape. Based on ideas related to the results

presented in this paper we have designed a new technology using a specific geometrical arrangement of the surface

vibrators. Further details will be presented elsewhere [52]. However this is just one example of the feasibility of

implementing experimentally some of the paper’s results.
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Another example for the application of this theory is the following. The nonlinear PDE possess an infinite number of

different solutions. Among them one can choose a feasible one in order to implement our technique.

Even if only a given type of perturbation is allowed due to technical limitations, it is always possible to use the

approximate condition (4) as in the case of task (13).

The concept that links all the situations where we have been able to suppress chaos is based on the mutual can-

cellation of nonintegrable terms as described by Eqs. (3) and (4). In other words, we should add some temporal per-

turbation in such a way that (at least approximately) both the dissipative and the total driving terms mutually cancel. A

remarkable situation (which is a particular case of the general theory but, at the same time, is present in all the studied

systems) is that of breather-like oscillations. These patterns can be stabilized using some spatially localized time-

periodic perturbations, where the amplitude, the spatial range and the frequency must satisfy some relationship.

However, this phenomenon is robust. A fine-tuning is not necessary. There is always a whole valid interval of values for

the amplitude, range and frequency that produces qualitatively the same result.

In conclusion, we have shown that the waveform of the perturbations in spatiotemporal nonlinear systems is crucial

for the resulting dynamics. This can be seen in the fact that two periodic time-dependent perturbations with the same

amplitude and frequency can produce different effects if the waveforms are different. However, in spatiotemporal

systems we should also consider the space-dependent part of the waveform. The most common perturbation in scientific

research is F ðtÞ ¼ f0 cosðxtÞ. However, nature is very rich in dynamical behaviors. Our work shows that using very

general spatiotemporal perturbations F ðx; tÞ we can make the difference between regular or chaotic behavior.

Using certain spatiotemporal perturbations F ðx; tÞ we can stabilize a breather or we can produce a turbulent

dynamics. We have been able to control different patterns in the sine-Gordon, Nonlinear Schr€odinger, and Complex

Ginzburg–Landau equations. Each of these systems possesses wide applications in many areas of Physics. Furthermore

we believe that these ideas can be applied to other spatiotemporal systems.
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